Вход/Регистрация
Новый ум короля: О компьютерах, мышлении и законах физики
вернуться

Пенроуз Роджер

Шрифт:

Неалгоритмическая природа математической интуиции

Как я уже указывал ранее, моя уверенность в том, что сознание способно влиять на характер суждений об истинности неалгоритмическим путем, опирается главным образом на результаты теоремы Геделя. Если мы видим, что сознание действует неалгоритмически при формулировании математическихсуждений, где вычисления и строгие доказательства являются непременным требованием, то уж наверняка нас нетрудно будет убедить и в том, что эта неалгоритмическая составляющая могла бы являться решающей и для роли сознания при более общих (не связанных с математикой) обстоятельствах.

Вспомним доводы, приведенные в главе 4 в рамках доказательства теоремы Геделя и устанавливающие ее применимость к решению вопроса о вычислимости. Там было показано, что какой бы (достаточно сложный) алгоритм ни использовал математик для установления математической истины или, что то же самое [215] , какую бы формальную системуон [216] ни принял для задания своего критерия истинности — всегда найдутся математические суждения, подобные сформулированному Геделем утверждению P k ( k ) для системы (см. Глава 4. «Теорема Геделя»), на которые его алгоритм не сможет дать ответа. Если ум математика работает полностью алгоритмически, то алгоритм (или формальная система), которые он обычно использует для построения своих суждений, оказываются не в состоянии справиться с утверждением P k ( k ), полученным с помощью его собственного алгоритма. Тем не менее, мы можем (в принципе) понять, что P k ( k ) на самом деле истинно! Этот факт, по всей видимости, должен был бы указать ему на противоречие, поскольку он , как и мы, не может не заметить его. А это, в свою очередь, может свидетельствовать о неалгоритмическомхарактере его рассуждений!

215

Как мы видели в главе 4, «Теоремы геделевского типа как следствие результатов, полученных Тьюрингом»), проверка справедливости доказательства в формальной системе всегда имеет алгоритмический xaрактep. И наоборот, любой алгоритм, который позволяет получать математически истинные утверждения, всегда можно добавить в систему аксиом и правил вывода обычной логики («предикатного исчисления»), тем самым создавая новую формальную систему выведения математических истин.

216

Разумеется, «он» означает «она или он». См. сноску 22 к гл 1 «Тест Тьюринга».

В этом заключается суть довода, предложенного Лукасом [1961] в поддержку точки зрения, согласно которой деятельность мозга не может быть полностью алгоритмической, против которого, однако, время от времени выдвигались различные контрдоводы (см., например, Бенасерраф [1967], Гуд [1969], Льюис [1969, 1989], Хофштадтер [1981], Бови [1982]). В связи с этой дискуссией я должен подчеркнуть, что термины «алгоритм» и «алгоритмический» относятся к чему угодно, что может быть (достоверно) смоделировано на компьютере общего назначения. Сюда включается, конечно, как «параллельная обработка», так и «нейросети» (или «машины с переменной структурой связей»), «эвристика», «обучение» (где всегда заранее задается определенный фиксированный шаблон, по которому машина должна обучаться), а также взаимодействие с внешним миром (которое может моделироваться посредством входной ленты машины Тьюринга). Наиболее серьезным из этих контраргументов является следующий: чтобы действительноубедиться в истинности утверждения P k ( k )нужно знать, какой именно алгоритм использует математик, и при этом быть уверенным в правомерности его использования в качестве средства достижения математической истины.

Если в голове у математика выполняется очень сложный алгоритм, то у нас не будет возможности узнать, что он из себя представляет, и поэтому мы не сможем сконструировать для него утверждение геделевского типа, не говоря уже об уверенности в обоснованности его применения.

Такого типа возражения часто выдвигаются против утверждений подобных тому, которое я привел в начале этого раздела, а именно, что теорема Геделя свидетельствует о неалгоритмическом характере наших математических суждений. Но сам я не нахожу это возражение слишком убедительным. Предположим на мгновение, что способы, которыми математики формируют осознанные суждения о математической истине действительно являютсяалгоритмическими. Попробуем, используя теорему Геделя, доказать абсурдность этого утверждения от противного ( reductio ad absurdum!).

Прежде всего мы должны рассмотреть возможность того, что разные математики используют неэквивалентныеалгоритмы для суждения об истинности того или иного утверждения. Однако — и это одно из наиболее поразительных свойств математики (может быть, почти единственной в этом отношении среди всех прочих наук) — истинность математических утверждений может быть установлена посредством абстрактных рассуждений! Математические рассуждения, которые убеждают одного математика, с необходимостью убедят и другого (при условии, что в них нет ошибок и суть нигде не упущена). Это относится и к утверждениям типа геделевского. Если первый математик готов согласиться с тем, что все аксиомы и операции некоторой формальной системы всегда приводят только к истиннымутверждениям, то он также должен быть готов принять в качестве истинного и соответствующее этой системе геделевское утверждение. Точно то же самое произойдет и со вторым математиком. Таким образом, рассуждения, устанавливающие математическую истину, являются передаваемыми [217] .

217

Некоторых читателей может беспокоить тот факт, что в среде математиков действительно существуют различные точки зрения. Вспомним рассуждения, приведенные в главе 4. Однако имеющиеся разногласия не так важны для нас. Они относятся только к в высшей степени абстрактным вопросам, касающимся очень больших множеств, в то время как мы вполне можем ограничиться утверждениями арифметического характера (с конечным числом кванторов существования и всеобщности) и применить дальнейшие рассуждения. (Возможно, здесь допущено некоторое преувеличение, поскольку принцип рефлексии, относящийся к бесконечным множествам, может иногда использоваться для вывода утверждений в арифметике.) Что касается крайне догматичного и не желающего соглашаться с Геделем формалиста, для которого такая вещь, как математическая истина, вообще не существует, то я его буду просто-напросто игнорировать, поскольку он явно не обладает способностью интуитивного понимания истины, которой посвящены наши рассуждения! Конечно, математики иногда допускают ошибки. Кажется, сам Тьюринг считал, что именно этои есть «лазейка», которая позволяет обойти аргументы геделевского типа в пользу того, что человеческое мышление существенно неалгоритмично. Но лично мне кажется невероятным, что свойство людей ошибаться каким-либо образом связано с нашей способностью к прозрениям! (Между прочим, генераторыслучайных чисел могут быть успешно реализованы при помоши алгоритмов.)

Отсюда следует, что мы, говоря об алгоритмах, имеем в виду не какие-то неясные разномастные построения, которые, возможно, рождаются и бродят в голове каждого отдельного математика, а одну универсально применяемую формальную систему, которая эквивалентнавсем возможным алгоритмам, использующимся математиками для суждений о математической истине. Однако мы никак не можем знать, является ли эта гипотетическая «универсальная» система той, которая используется математиками для установления истинности. Ибо в этом случае мы могли быпостроить для нее геделевское утверждение, и знали бы наверняка, что оно математически истинно. Следовательно, мы приходим к заключению, что алгоритм, который математики используют для определения математической истины, настолько сложен или невразумителен, что даже правомерность eго применения навсегда останется для нас под вопросом.

Но это бросает вызов самой сущности математики! Основополагающим принципом всего нашего математического наследия и образования является непоколебимая решимость не склоняться перед авторитетом каких-то неясных правил, понять которые мы не надеемся. Мы должны видеть— по крайней мере, в принципе — что каждый этап рассуждений может быть сведен к чему-то простому и очевидному. Математическая истина не есть некая устрашающе сложная догма, обоснованность которой находится вне границ нашего понимания — она строится из подобных простых и очевидных составляющих; и когда они становятся ясны и понятны нам, с их истинностью соглашаются все без исключения.

С моей точки зрения, получить такое явное reductio ad absurdum(без применения настоящего математического доказательства) мы даже и мечтать не могли! Основная идея должно быть теперь ясна. Математическая истина — это не то, что мы устанавливаем просто за счет использования алгоритма. Кроме того, я полагаю, что наше сознание— это решающая составляющая в нашем понимании математической истины. Мы должны «видеть» истинность математических рассуждений, чтобы убедиться в их обоснованности. Это «видение» — самая суть сознания. Оно должно присутствовать везде , где мы непосредственно постигаем математическую истину. Когда мы убеждаемся в справедливости теоремы Геделя, мы не только «видим» ее, но еще и устанавливаем неалгоритмичность природы самого процесса «видения».

  • Читать дальше
  • 1
  • ...
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: