Шрифт:
Есть только одно средство для закрепления успеха экологической дифференциации разделенных популяций — они должны за время своей изоляции стать разными видами, т. е. заменить географический барьер генетическим. Постоянное «стремление» вида расщепиться на несколько дочерних, по существу, представляет собой попытку вида освободиться от миграционного генетического груза. Кроме того, на периферии своего ареала вид может сталкиваться с качественно иными условиями среды, адаптация к которым означала бы прорыв вида в новую экологическую область.
Обрисованная здесь картина выглядит довольно оптимистично, но не следует забывать, что все эти адаптационные процессы предполагает фиксацию новых аллелей по десяткам локусов. Выше мы убедились в том, что на это требуются тысячи и даже десятки тысяч поколений. Но самое главное состоит в том, что естественный отбор проходит без селекционера, а где гарантии, что коэффициент отбора способен сохранять на протяжении нескольких тысяч поколений хотя бы свой знак? Иными словами, для адаптивной эволюции вектор естественного отбора должен сохранять направление и интенсивность в течение огромных отрезков времени. А учитывая противодействие со стороны генного потока,действие естественного отбора должно распространяться на значительную часть ареала вида, желательно на весь его ареал.
Естественный отбор — это метафора, его давление можно понимать как постепенное изменение интенсивности каких-то жизненно важных факторов в пространстве и (или) во времени. Например, если ареал вида соседствует с экологической областью, где уровень его абсолютной приспособленности на порядок ниже, то необходимо, чтобы такой контакт сохранялся в течение нескольких десятков тысяч поколений. Или же по всей территории, занятой видом, должно идти однонаправленное изменение какого-то жизненно важного параметра. Для адаптации к такой ситуации необходимо, чтобы скорость изменения параметра была очень небольшой. Во всяком случае, время перехода от оптимальных условий к очень плохим должно составлять тысячи или даже десятки тысяч лет.
О значении стабильности среды для экологической дифференциации, по-видимому, свидетельствует удивительное явление повышения численности видов большинства групп растений и животных в направлении от полюсов к экватору. Действительно, климат в тропиках гораздо стабильнее, чем в умеренных широтах. Достаточно вспомнить о недавнем оледенении, практически не отразившемся на животном и растительном мире экваториальной зоны.
Кроме того, многие жизненно важные параметры среды испытывают медленные колебания с периодом, исчисляемым миллионами и даже десятками миллионов лет. Так, за последние 220 млн лет климат на Земле сменялся циклически с теплого на холодный не менее 16 раз, примерно по 15 млн лет на цикл (рис. 12). Уровень мирового океана также подвержен циклическим изменениям. Только за последние 65 млн лет его уровень 8 раз изменялся на 100–250 метров. Еще более медленны, но более грандиозны орогенические (горообразовательные) циклы. В них можно выделить длительный геосинклинальный период с продолжительностью до 500 млн лет; за ним в течение примерно 50 млн лет идет период бурного поднятия коры, после которого в течение нескольких десятков миллионов лет может длиться возвращение к геосинклинальному периоду. Во время периода горообразования горы «вздымаются» со скоростью около одного миллиметра в год. В геосинклинальный период эрозия стачивает поднятия быстрее, чем они появляются. Осадки могут накапливаться в мелководных эпиконтинентальных морях со скоростью до одного километра за 10 миллионов лет. Все эти геологические явления, среди которых следует упомянуть еще и дрейф континентов, изменяют, характер морских и воздушных течений, а тем самым и климат многих областей.
Итак, данные геологии свидетельствуют о том, что на Земле действительно происходили и происходят очень медленные и однонаправленные изменения среды, захватывающие огромные территории. Характерное время таких изменений выражается миллионами лет.
Рис. 12.Изменение среднегодовой температуры в течение юры и мела (по: [Красилов, 1977]).
Легко представить, что чем меньше ареал, занимаемый видом, тем больше у него шансов попасть под действие рассматриваемых здесь медленных однонаправленных сдвигов среды. Американский палеонтолог А. Буко проследил за изменением в течение силура и девона видового состава брахиопод, обитавших в разных геологических провинциях, по-видимому, просто в разных эпиконтинентальных морях. Оказалось, что единственным фактором, от которого зависела скорость изменения фауны, была площадь этих морей. Чем меньше площадь, тем быстрее изменялся состав брахиопод. Заметим, что речь идет о миллиардах особей, занимавших ареалы в миллионы квадратных километров.
Рассмотрев в этой главе обстоятельства, при которых возможны ненейтральные изменения генофонда вида, мы приходим к двум важным выводам: во-первых, уровень приспособленности вида к среде следует признать всего лишь удовлетворительным, и, во-вторых, скорость фенотипического сдвига (приспособительного характера) не может быть очень высокой.
Глава 4. Ответ на отбор
Лорд Сомервиль, упоминая о том, чего животноводы достигли по отношению к овце, говорит: «Кажется, будто они начертили на стене форму, совершенную во всех отношениях, и затем придали ей жизнь».
Ч. ДарвинОбычно после прочтения книги Ч. Дарвина «Происхождение видов…» и даже после ознакомления с трудами крупнейших неодарвинистов от А. Вейсмана до Э. Майра у читателя остается впечатление, что отбор может все. Ограничения на его творческие возможности накладывают лишь разного рода экологические перипетии, но будь обстоятельства благоприятны, отбор за считанные миллионы лет мог бы в буквальном смысле создать из мухи слона.
Со времен Дарвина в качестве главного аргумента в пользу безграничных возможностей отбора выдвигаются успехи человека в создании хозяйственно ценных форм растений и животных. Особенно впечатляют результаты методической селекции последних двух столетий. Чаще всего такая селекция была направлена на повышение мощности вполне конкретной рабочей структуры. Чем не модель для изучения прогрессивной эволюции? Заметим, что скрещивая более и менее продвинутые на пути такого «прогресса» формы и следя за их потомством, можно было бы вскрыть генетическую подоплеку мощности рабочих структур. Итак, если мы действительно хотим проверить тезис о всесильности отбора и научиться измерять его творческие возможности, нам следует совершить небольшой экскурс в генетику количественных признаков.
Изменчивость особей
Вооружившись подходящим измерительным инструментом, мы можем убедиться, что взрослые особи любой природной популяции отличаются друг от друга по множеству характеристик (признаков): размерам тела и органов, частоте пульса, скорости бега, численности потомства и т. д. Попробуем найти способ, как оценить степень изменчивости популяции по таким мернымпризнакам.
Выберем наугад большое число особей (желательно одного возраста и пола) и измерим у них какую-нибудь характеристику. Ясно, что в любой выборке можно найти одну особь с наименьшей величиной признака и одну — с наибольшей. Разность между этими значениями — диапазон варьирования мерного признака — может служить грубой мерой его изменчивости в популяции. Разобьем диапазон варьирования на ряд равных по величине интервалов. Очевидно, что с помощью этой процедуры мы разделим свою выборку на классы, каждый из которых формируется особями со значением признака, не выходящим за пределы соответствующего интервала. Теперь всю эту совокупность особей можно охарактеризовать ее распределением по признаку,т. е. числом особей, входящих в каждый класс. Фактически мы задаем тем самым математическую функцию численности особей от величины измеряемого параметра.