Шрифт:
Самые первые зеркала удивляли и побуждали человека к самоанализу. Платон был первым западным мыслителем, размышлявшим об их феномене: «Можно взять зеркало и поворачивать его во всех направлениях: из ничего возникнут отражения солнца и звезд в небе, вас самого и других существ, предметов и растений и всех возможных объектов. Да, всего того, что есть в реальности, но не в зеркале» [40]. Платон был уверен: образ в зеркале – обманчивый и искаженный. Нарцисс спутал свое отражение в воде с реальностью и влюбился в него. Не способный оторвать взгляд от прекрасного существа, которое, как ему казалось, он видел за границей поверхности воды, он умер. Но, с другой стороны, Сократ утверждал: если юноша станет рассматривать себя в зеркале, он лучше себя поймет. Сегодня отражения в зеркалах дают ощущение благополучия. Немногие люди способны пройти мимо зеркала и не взглянуть туда. Интересно, на что была бы похожа жизнь без отраженных образов? Но стекло и зеркала сделали гораздо больше, чем просто изменили наше самовосприятие. Они также изменили и наш взгляд на самих себя во Вселенной.
Летом 1609 г. Галилео Галилей, в то время живший в Венеции, услышал об устройстве, позволяющем «смотреть на удаленные предметы, будто они находятся вблизи» [41]. Прибор, о котором ему рассказывали, представлял собой трубку, на концах которой укреплены куски стекла с изогнутыми поверхностями. Галилео был заинтригован, но отнесся к новости осторожно: он знал, что стекла с изогнутыми поверхностями искажают изображение, а при объединении двух стекол искажение должно еще больше усилиться. Сам умелый мастер, Галилео купил стеклянные линзы у продавца очков и принялся конструировать телескоп. К концу лета первый экземпляр был готов. Он обеспечивал восьмикратное увеличение. Галилей продемонстрировал его венецианским законодателям и вызвал «безмерное удивление присутствовавших» [42]. Галилей рассматривал объекты, которые прежде не видел никто. Он нанес на карту неба сотни новых звезд и даже, к своему изумлению, разглядел горы на Луне и спутники Юпитера.
В то время считалось, что Земля находится в центре Вселенной. Круглые планеты и звезды вращаются вокруг центра в хрустальных сферах. Но представлениям о небесных сферах никак не соответствовали картины ночного неба, увиденные Галилеем. Более точные измерения орбит планет, проведенные с помощью телескопа, также не позволяли больше считать Землю центром. Наблюдения Галилея предоставили доказательства в поддержку новой модели Вселенной, предложенной Николаем Коперником в 1543 г. Центральное место во Вселенной занимает Солнце, утверждал Коперник [43]. Модель противоречила не только господствующей религиозной доктрине, но и обыденной логике: разве может Земля двигаться в пространстве без того, чтобы это движение не замечали люди на поверхности? [44].
Однако доказательства, представленные Галилеем, невозможно было проигнорировать. Впервые со времен Античности пространство ночного неба расширилось. А благодаря знаниям, полученным с помощью кремниевых линз телескопа, мыслители постепенно отказались от представлений о Вселенной, господствовавших со времен Аристотеля. «Если бы они видели то, что видим мы, – писал Галилей о живших до него астрономах, – они судили бы так же, как мы» [45].
Кремний позволил увидеть небесные просторы, которые нельзя увидеть невооруженным глазом. Людям постоянно хочется заглянуть все глубже и глубже во Вселенную. Изобретение Галилея дало импульс к созданию мощных телескопов. К середине XVII в. астрономы строили телескопы длиной в 50 метров: для управления ими требовалась сложная система опор и блоков. Увеличение длины телескопов – один из способов избежать размытости изображения, возникавшей вследствие кривизны поверхности линз [46]. В таких «телескопах-рефракторах» свет разных цветов, проходя через линзы, пропускался в разных количествах, что не позволяло получить четкое изображение. Исаак Ньютон справился с этой проблемой, создав «телескоп-рефлектор», в котором использовались не линзы, а зеркала. Они отражали каждую составляющую света одинаково, независимо от цвета, что делало изображение более четким. Ньютону телескоп служил еще одним доказательством того, что белый цвет состоит из семи цветов радуги.
Даже при использовании очень больших зеркал четкость изображения не пропадала. Чем больше зеркала, тем дальше позволял заглянуть телескоп. Живший в XVIII в. астроном Уильям Гершель довел использование этого принципа до крайних пределов [47]. Он сделал больше, чем кто-либо другой, для повышения мощности отражательных телескопов, сумел увидеть астрономические объекты за пределами Солнечной системы. «Великая цель, – писал он сэру Джозефу Бенксу, президенту Королевского научного общества, – увеличить то, что я назвал “силой проникновения в космос”» [48]. Шлифуя и полируя все более и более крупные зеркала, Гершель сумел в конце концов разглядеть, что некоторые мельчайшие световые точки на небе являются на самом деле распыленными объектами [49]. Некоторые из этих «туманностей», как было доказано позже, – это галактики, подобные Млечному Пути. С тех пор размеры отражательных телескопов значительно увеличились: в 1917 г. на горе Уилсон был установлен телескоп Хукера с зеркалом диаметром 2,5 метра, а в 1948 г. на горе Паломар – телескоп Хейла с зеркалом диаметром 5 метров. Сегодня телескопы с зеркалами диаметром более 10 метров, установленные на горных вершинах Канарских и Гавайских островов, позволяют с невиданной ранее точностью вести наблюдение за ночным небом.
Фотоны не только переносят информацию о соприродных им звездах, но переносят и энергию. Задолго до изобретения телескопов зеркала использовались, чтобы улавливать и фокусировать энергию света ближайшей к нам звезды – Солнца.
В середине XVII в. Афанасий Кирхер, ученый-иезуит, установил пять зеркал, чтобы направить солнечный свет на мишень на расстоянии 30 метров. Температура воздуха около мишени была настолько высокой, что его помощник чувствовал себя рядом с ней крайне некомфортно. «Какого ужасного результата можно было бы добиться, – размышлял Кирхер, – использовав тысячу зеркал!» [50]. Кирхер, вероятно, был знаком с легендой об архимедовых зеркалах. В начале III в. до н. э., когда римские корабли под командованием полководца Марцелла подошли к Сиракузам, Архимед велел находившимся на берегу солдатам разместить блестящие щиты таким образом, чтобы они направляли отраженные солнечные лучи на вражескую армаду. В результате концентрация тепла оказалась столь высока, что вражеские корабли загорелись. Действительно, хорошо зная геометрию, Архимед мог рассчитать, как сфокусировать лучи света и как нацелить метательные орудия, чтобы разрушить корабли противника до того, как они смогут подойти близко к берегу и высадить десант [51].
В книге «Pirotechnia», изданной в XVI в., Ванноччо Бирингуччо вспоминает о беседе с другом, изготовившим зеркало диаметром почти 70 сантиметров. Однажды, наблюдая за парадом войск в германском городе Ульме, этот человек стал развлекаться тем, что постоянно направлял отражаемый зеркалом солнечный свет на железные доспехи одного из солдат. В результате их температура повысилась настолько, «что стала почти невыносимой… а одежда под доспехами вспыхнула и сгорела, причинив ему ужасные страдания» [52].
В XVI в. Леонардо да Винчи придумал новое применение для солнечных лучей в мирных целях. Как всегда амбициозный, Леонардо намеревался изготовить вогнутое зеркало диаметром шесть километров, которое концентрировало бы солнечную энергию в точке главного фокуса, чтобы нагревать воду или плавить металлы [53]. Как и многие его изобретения, этот проект остался на бумаге. Лишь с наступлением промышленной революции в Великобритании появилась возможность изготавливать линзы и зеркала больших размеров, хотя и не таких, о каких мечтал Леонардо. В последние годы своей жизни Генри Бессемер построил солнечную печь для плавки металлов. Отражатель, установленный внутри башни высотой 10 метров, направлял солнечный свет на расположенное на крыше вогнутое зеркало площадью четыре квадратных метра. Зеркало направляло сфокусированный с помощью линзы поток света в нижнюю часть башни на тигель. Бессемеру удавалось плавить медь и испарять цинк, но в целом это весьма дорогое устройство оказалось не очень эффективным. Спустя несколько лет даже Бессемер «разочаровался в солнечной печи и отказался от ее использования» [54].