Вход/Регистрация
Разработка ядра Linux
вернуться

Лав Роберт

Шрифт:

Следует обратить внимание, что поскольку функция

schedule_timeout
использует планировщик, то код, который ее вызывает, должен быть совместим с состоянием ожидания. Обсуждение, посвященное атомарности и переходу в состояние ожидания, приведено в главах 8 и 9. Если коротко, то эту функцию необходимо вызывать в контексте процесса и не удерживать при этом блокировку.

Функция

schedule_timeout
достаточно проста. Она просто использует таймеры ядра. Рассмотрим эту функцию подробнее.

signed long schedule_timeout(signed long timeout) {

 timer_t timer;

 unsigned long expire;

 switch (timeout) {

 case MAX_SCHEDULE_TIMEOUT:

schedule;

goto out;

 default:

if (timeout < 0) {

printk(KERN_ERR "schedule_timeout: wrong timeout "

"value %lx from %p\n", timeout, builtin_return_address(0));

current->state = TASK_RUNNING;

goto out;

}

 }

 expire = timeout + jiffies;

 init_timer(&timer);

 timer.expires = expire;

 timer.data = (unsigned long) current;

 timer.function = process_timeout;

 add_timer(&timer);

 schedule;

 del_timer_sync(&timer);

 timeout = expire - jiffies;

out:

 return timeout < 0 ? 0 : timeout;

}

Эта функция создает таймер

timer
и устанавливает время срабатывания в значение
timeout
импульсов системного таймера в будущем. В качестве обработчика таймера устанавливается функция
process_timeout
, которая вызывается, когда истекает период времени таймера. Далее таймер активизируется, и вызывается функция
schedule
. Так как предполагается, что текущее задание находится в состоянии
TASK_INTERRUPTIBLE
или
TASK_UNINTERRUPTIBLE
, то планировщик не будет выполнять текущее задание, а выберет для выполнения другой процесс.

Когда интервал времени таймера истекает, то вызывается функция

process_timeout
, которая имеет следующий вид.

void process_timeout(unsigned long data) {

 wake_up_process((task_t*)data);

}

Эта функция устанавливает задание в состояние

TASK_RUNNING
и помещает его в очередь выполнения.

Когда задание снова планируется на выполнение, то оно возвращается в функцию

schedule_timeout
(сразу после вызова функции
schedule
). Если задание возвращается к выполнению преждевременно, то таймер ликвидируется. После этого задание возвращается из функции ожидания по тайм-ауту.

Код оператора

switch
служит для обработки специальных случаев и не является основной частью функции. Проверка на значение
MAX_SCHEDULE_TIMEOUT
позволяет заданию находиться в состоянии ожидания неопределенное время. В этом случае таймер не устанавливается (поскольку нет ограничений на интервал времени ожидания), и сразу же активизируется планировщик. Если вы это применяете, то, наверное, у вас есть лучший способ вернуть задание в состояние выполнения!

Ожидание в очереди wait queue в течение интервала времени

В главе 4 рассматривалось, как контекст процесса в ядре может поместить себя в очередь ожидания для того, чтобы ждать наступления некоторого события, а затем вызвать планировщик, который выберет новое задание для выполнения. Если где-то в другом месте произойдет указанное событие, то вызывается функция

wake_up
для всех заданий, которые ожидают в очереди. Эти задания возвращаются к выполнению и могут продолжать работу.

Иногда желательно ожидать наступления некоторого события или пока не пройдет определенный интервал времени, в зависимости от того, что наступит раньше, В этом случае код должен просто вызвать функцию

schedule_timeout
вместо функции
schedule
после того, как он поместил себя в очередь ожидания. Задание будет возвращено к выполнению, когда произойдет желаемое событие или пройдет указанный интервал времени. Код обязательно должен проверить, почему он возвратился к выполнению — это может произойти потому, что произошло событие, прошел интервал времени или был получен сигнал — после этого необходимо соответственным образом продолжить выполнение.

Время вышло

В этой главе были рассмотрены понятия, связанные с представлением о времени в ядре и с тем, как при этом происходит управление абсолютным и относительным ходом времени. Были показаны отличия абсолютного и относительного времени, а также периодических и относительных событий. Далее были рассмотрены прерывания таймера, импульсы таймера, константа

HZ
и переменная
jiffies
.

После этого было рассказано о том, как реализованы таймеры ядра и как их можно использовать в собственном коде ядра. В конце главы были представлены другие методы, которые разработчики могут использовать для учета времени.

  • Читать дальше
  • 1
  • ...
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: