Вход/Регистрация
1. Современная наука о природе, законы механики
вернуться

Фейнман Ричард Филлипс

Шрифт:

Другими словами, можно определить скорость следующим об­разом. Определяем расстояние, которое было пройдено за очень малый отрезок времени, и, разделив его на этот отрезок времени, получаем скорость. Однако этот отрезок должен быть как мож­но меньше, и чем меньше, тем лучше, потому что в этот период могут произойти снова изменения. Смешно, например, для па­дающего тела в качестве такого отрезка принять час. Принять в качестве отрезка секунду, может быть, удобно для автомобиля, так как за секунду его скорость изменяется не слишком силь­но, но этот отрезок велик для падающего тела. Таким образом, чтобы вычислить скорость более точно, нужно брать все меньшие и меньшие интервалы времени. Если на миллионную долю се­кунды мы разделим расстояние, которое было пройдено в течение этого времени, то получим расстояние в секунду, т.е. как раз то, что мы понимаем под скоростью. Именно это нужно было сказать нашей нарушительнице, т. е. дать то определение; скорости, которое мы и будем использовать.

Такое определение содержит некую новую идею, которая была недоступна грекам в ее общей форме.

Она заключается в том, чтобы малые расстояния разделить на соответствующие малые отрезки времени и посмотреть, что произойдет с частным, если отрезок времени брать все меньше и меньше (иными словами, брать предел отношения пройденно­го расстояния к интервалу времени при неограниченном уменьшении последнего). Впервые эта идея была высказана незави­симо Ньютоном и Лейбницем и явилась основой новой области математики — дифференциального исчисления. Оно возникло в связи с описанием движения, и первым его приложением был ответ на вопрос: «Что означает 90 км/час?»

Попытаемся теперь точнее определить скорость. Пусть за некоторое малое время e машина или какое-то другое тело про­шли малое расстояние х; тогда скорость v определяется как

v=x/e,

причем точность будет тем больше, чем меньше e. Математики записывают это следующим образом:

(8.3)

т. е. скорость есть предел отношения х/eпри e, стремящемся к нулю. Для нашей машины-нарушительницы невозможно точно вычислить скорость, так как таблица неполная. Ее положение известно нам только через интервалы 1 мин. Приближенно, конечно, можно сказать, что в течение седьмой минуты, например, она шла со средней скоростью 90 км/час, однако о ее ско­рости в конце шестой минуты ничего сказать невозможно. Мо­жет быть, она ускорялась и скорость с 40 км/час в начале шестой минуты возросла до 90 км/час в конце ее, а может быть, она дви­галась иначе. Мы не знаем этого точно, так как у нас нет деталь­ной записи ее движения между шестой и седьмой минутами. Только когда таблица будет пополнена бесконечным числом данных, из нее можно будет действительно вычислить скорость. Если, однако, нам известна полная математическая формула, как, например, в случае падающего тела [уравнение (8.1)], то можно подсчитать скорость. Ведь по формуле можно найти положение тела в любой момент времени.

В качестве примера давайте найдем скорость падающего шара через 5 сек после начала падения. Один способ — это по­смотреть по табл. 8.2, что происходило с шариком на пятой се­кунде. В течение этой секунды он прошел 45 м, так что, каза­лось бы, он падал со скоростью 45 м/сек. Однако это неверно, поскольку скорость его все время изменялась. Конечно, в сред­нем в течение этой секунды она составляла 45 м/сек, но в дейст­вительности шар ускорялся и в конце пятой секунды падал быстрее 45 м/сек. Наша задача состоит в том, чтобы опре­делить скорость точно. Сделаем это следующим образом. Нам известно, где шарик находился через 5 сек. За 5 сек он прошел расстояние 125 м. К моменту 5,1 сек общее расстояние, которое прошел шарик, составит, согласно уравнению (8.1), 130,05 м. Таким образом, за дополнительную десятую долю секунды он проходит 5,05 м. А поскольку 5,05м за 0,1 сек то же самое, что и 50,5 м/сек, то это и будет его скорость. Однако это все еще не совсем точно. Для нас совершенно неважно, будет ли это скорость в момент 5 сек, или в момент 5,1 сек, или где-то по­средине. Наша задача вычислить скорость точно через 5 сек, а этого мы пока не сделали. Придется улучшить точность и взять теперь на тысячную долю больше 5 сек, т. е. момент 5,001 сек, Полное расстояние, пройденное за это время, составляет

s=5·5,0012 = 5·25,010001=125,050005 м.

Следовательно, в последнюю тысячную долю секунды шарик проходит 0,050005 м, и если разделить это число на 0,001 сек, то получим скорость 50,005 м/сек. Это уже очень близко, но все же еще не точно. Однако теперь уже ясно, как поступить, чтобы найти скорость точно. Удобнее решать эту задачу в несколько более общем виде. Пусть требуется найти скорость в некоторый момент времени t0(например, 5 сек). Расстояние, которое прой­дено к моменту t0 (назовем его s0), будет 5t20(в нашем случае 125 м). Чтобы определить расстояние, мы задавали вопрос: где окажется тело спустя время t0+ (небольшой добавок), или t0+e? Новое положение тела будет 5(t0+e)2=5t20+10t0e+5e2. (Это расстояние больше того расстояния, которое шарик прошел за t0 сек, т. в. больше 5t20.)Назовем это расстояние s0+ (не­большой добавок), или s0+x. Если теперь вычесть из него рас­стояние, пройденное к моменту t0, то получим х — то дополни­тельное расстояние, которое шарик прошел за добавочное вре­мя e, т. е. x=10t0e+5e2. Так что в первом приближении ско­рость будет равна

v=x/e=10t0+5e. (8.4)

Теперь мы уже знаем, что нужно делать, чтобы получить ско­рость точно в момент t0: нужно брать отрезок e все меньше и меньше, т. е. устремлять его к нулю. Таким путем из уравне­ния (8.4) получим

v (в момент t0)=10t0,

В нашей задаче t0=5 сек, следовательно, скорость равна v=10·5=50 м/сек. Это и есть нужный ответ. Раньше, когда e бралось равным 0,1 и 0,001 сек, получалась несколько большая величина, чем 50 м/сек, но теперь мы видим, что в действитель­ности она в точности равна 50 м/сек.

§ 3. Скорость как производная

Процедура, которую мы только что выполнили, настолько часто встречается в математике, что для величин e и x: было придумано специальное обозначение: e обозначается как Dt, а х — как Ds. Величина Dt означает «небольшой добавок к t», причем подразумевается, что этот добавок можно делать мень­ше. Значок D ни в коем случае не означает умножение на какую-то величину, точно так же как sinq не означает s·i·n·q. Это просто некоторый добавок ко времени, причем значок D напоми­нает нам о его особом характере. Ну, а если D не множитель, то его нельзя сократить в отношении Ds/Dt. Это все равно, что в выражении sinq/sin2q сократить все буквы и получить 1/2. В этих новых обозначениях скорость равна пределу отношения Ds/Dt при Dt, стремящемся к нулю, т. е.

(8.5)

Это по существу формула (8.3), но теперь яснее видно, что здесь все изменяется, а, кроме того, она напоминает, какие именно ве­личины изменяются.

Существует еще один закон, который выполняется с хоро­шей точностью. Он гласит: изменение расстояния равно скоро­сти, умноженной на интервал времени, за которое это изменение произошло, т. е. Ds=vDt. Это правило строго справедливо толь­ко тогда, когда скорость не изменяется в течение интервала Dt, а это, вообще говоря, происходит, только когда Dt доста­точно мало. В таких случаях обычно пишут ds=vdt, где под dt подразумевают интервал времени Dt при условии, что он сколь угодно мал. Если интервал Dt достаточно велик, то скорость за это время может измениться и выражение Ds = vDt будет уже приближенным. Однако если мы пишем dt, то при этом подра­зумевается, что интервал времени неограниченно мал и в этом смысле выражение ds=vdt точное. В новых обозначениях вы­ражение (8.5) имеет вид

  • Читать дальше
  • 1
  • ...
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: