Фейнман Ричард Филлипс
Шрифт:
При таком положении, когда детальное рассмотрение невозможно, полезно знать некоторые общие свойства, т. е. общие теоремы или принципы, которые являются следствием законов Ньютона. Один из таких принципов — это закон сохранения энергии, который мы обсуждали в гл. 4. Вторым принципом является закон сохранения импульса, которому посвящена настоящая глава. Другая причина необходимости дальнейшего изучения механики — это существование некоторых общих свойств движения, которые повторяются при различных обстоятельствах; так что полезно изучить это свойство на каком-то одном частном случае. Мы, например, будем изучать столкновения; различные виды столкновений имеют много общего. Или возьмем течение жидкости, неважно какой; законы течения разных жидкостей имеют много общего. Еще один пример, который мы будем изучать, это колебания, или осцилляции, в частности свойства механических волн: звука, колебания стержней и т. д.
Когда мы обсуждали законы Ньютона, то уже говорили о том, что они являются своего рода программой, которая призывает нас обратить особое внимание на силы. Но о самих силах Ньютон сказал только две вещи. Он полностью сформулировал закон для сил тяготения, но почти ничего не знал о более сложных силах, например о силах между атомами. Однако он открыл одно правило, одно общее свойство всех сил, которое составляет Третий закон. Таким образом, все, что Ньютон знал о природе сил,— это закон тяготения и общий принцип, который гласит:
Сила действия равна силе противодействия.
Означает это примерно следующее. Пусть имеются два маленьких тела, скажем две частицы, и пусть первая из них толкает вторую с некоторой силой. Тогда в соответствии с Третьим законом Ньютона вторая частица будет толкать первую с той же силой, но в противоположную сторону. Более того, эти силы будут действовать вдоль одной и той же линии. Эта гипотеза, или, если хотите, закон, предложенный Ньютоном, выполняется с большой точностью, хотя, впрочем, он не абсолютно точен (с нарушениями его мы познакомимся позднее). Сейчас, однако, мы будем считать его совершенно точным. Разумеется, если есть еще третья частица, которая расположена не на той же линии, что две первые, то закон вовсе не означает, что сила, действующая на первую частицу, равна полной силе, действующей на вторую. Ведь эта третья частица может толкать две первые, в результате чего полная сила, действующая на первую частицу, будет направлена по-другому и, вообще говоря, не будет ни равна, ни противоположна силе, действующей на вторую частицу. Однако полная сила, действующая на каждую из частиц, может быть разложена на две составляющие, которые представляют собой силы, действующие между каждой парой частиц. Эти компоненты силы для каждой пары частиц должны быть равны по величине и противоположны по направлению.
§ 2. Закон сохранения импульса
Давайте посмотрим, чем интересен Третий закон Ньютона. Предположим для простоты, что имеются только две взаимодействующие частицы — частица 1 и частица 2, масса которых может быть различна. К какому следствию приводит равенство и противоположная направленность сил между ними? Согласно Второму закону, сила равна скорости изменения импульса со временем, так что скорость изменения импульса частицы 1 равна скорости изменения импульса частицы 2, т. е.
dp1/dt=dp2/dt (10.1)
Но если скорости изменения все время равны по величине и противоположны по направлению, то и полное изменение импульса частицы 1 равно и противоположно полному изменению импульса частицы 2. Это означает, что если мы сложим эти импульсы, то скорость изменения суммы под воздействием одних только взаимных сил (их обычно называют внутренними силами) будет равна нулю, т. е.
(dp1+dp2)/dt=0. . (10.2)
Напомним еще раз, что в нашей задаче мы предполагаем отсутствие каких-либо других сил, кроме внутренних. Но равенство нулю скорости изменения этой суммы означает просто, что величина (p1+p2) не изменяется с течением времени. (Эта величина записывается также в виде m1v1+m2v2и называется полным импульсом двух частиц.) Таким образом, мы получили, что при наличии одних только внутренних сил полный импульс двух частиц остается неизменным. Это утверждение выражает закон сохранения полного импульса в данном случае. Из него следует, что если мы измеряем или подсчитываем величину ni1v1+m2v2, т. е. сумму импульсов двух частиц, то для любых сил, действующих между ними, как бы сложны они ни были, мы должны получить одинаковый результат как до действия сил, так и после, т. е. полный импульс остается постоянным.
Рассмотрим теперь картину посложнее, когда есть три или большее число взаимодействующих частиц. Очевидно, что если существуют только внутренние силы, то полный импульс всех частиц остается постоянным, поскольку увеличение импульса одной частицы под воздействием другой частицы в точности компенсируется уменьшением импульса этой второй частицы из-за противодействия первой, т. е. внутренние силы так сбалансированы, что полный импульс всех частиц измениться не может. Таким образом, если нет сил, действующих на систему извне (внешних сил), то ничто не может изменить ее полный импульс и, следовательно, он остается постоянным.
Но нужно еще сказать о том, что произойдет, если будут еще существовать какие-то другие силы, кроме сил взаимодействия между частицами. Предположим, что мы изолировали систему взаимодействующих частиц. Если имеются только взаимные силы, полный импульс, как и прежде, меняться не будет, сколь бы сложны ни были эти силы. Если, однако, существуют силы, обусловленные частицами вне этой изолированной группы, то, как мы докажем позднее, сумма всех этих внешних сил равна скорости изменения полного импульса всех внутренних частиц. Это очень полезная теорема.