Шрифт:
Теперь мы этот результат собираемся записать в наших новых обозначениях. Сначала сформулируем наш второй общий принцип квантовой механики. Когда частица может достичь данного состояния двумя возможными путями, полная амплитуда процесса есть сумма амплитуд для этих двух путей, рассматриваемых порознь. В наших новых обозначениях мы напишем
При этом мы предполагаем, что щели 1 и 2 достаточно малы, так что, когда мы говорим, что электрон прошел сквозь щель, не встает вопрос, через какую часть щели он прошел. Конечно, можно разбить каждую щель на участки с конечной амплитудой того, что электрон прошел через верх щели или через низ и т. д. Мы допустим, что щель достаточно мала, так что нам не надо думать об этой детали. Это одна из тех неточностей, о которых мы говорили; суть дела можно уточнить, но мы покамест не будем этого делать.
Теперь мы хотим подробнее расписать, что можно сказать об амплитуде процесса, в котором электрон достигает детектора в точке х через щель 1. Это можно сделать, применив третий общий принцип. Когда частица идет каким-то определенным данным путем, то амплитуда для этого пути может быть записана в виде произведения амплитуды того, что будет пройдена часть пути, на амплитуду того, что и остаток пути будет пройден.
Для установки, показанной на фиг. 1.1, амплитуда перехода от s к х сквозь щель 1 равна амплитуде перехода от s к 1, умноженной на амплитуду перехода от 1 к х:
Опять-таки, это утверждение не совсем точно. Нужно добавить еще один множитель — амплитуду того, что электрон пройдет щель в точке 1; но пока это у нас просто щель, и мы положим упомянутый множитель равным единице.
Заметьте, что уравнение (1.5) кажется написанным задом наперед. Его надо читать справа налево: электрон переходит от s к 1 и затем от 1 к х. В итоге если события происходят друг за другом, т. е. если вы способны проанализировать один из путей частицы, говоря, что она сперва делает то-то, затем то-то, потом то-то, то итоговая амплитуда для этого пути вычисляется последовательным умножением на амплитуду каждого последующего события. Пользуясь этим законом, мы можем уравнение (1.4) переписать так:
А теперь мы покажем, что, используя одни только эти принципы, уже можно решать и более трудные задачи, наподобие показанной на фиг. 1.2.
Фиг. 1.2. Интерференционный опыт посложнее.
Тут изображены две стенки: одна с двумя щелями 1 и 2, другая с тремя — а, b и с. За второй стенкой в точке х стоит детектор, и мы хотим узнать амплитуду того, что частица достигнет х. Один способ решения состоит в расчете суперпозиции, или интерференции, волн, проходящих сквозь щели; но можно сделать и иначе, сказав, что имеется шесть возможных путей, и накладывая друг на друга их амплитуды. Электрон может пройти через щель 1, затем через щель а и потом в х, или же он мог бы пройти сквозь щель 1, затем сквозь щель b и затем в x; и т. д. Согласно нашему второму принципу, амплитуды взаимоисключающих путей складываются, так что мы должны записать амплитуду перехода от s к х в виде суммы шести отдельных амплитуд. С другой стороны, согласно третьему принципу, каждую из них можно записать в виде произведения трех амплитуд. Например, одна из них — это амплитуда перехода от s к 1, умноженная на амплитуду перехода от 1 к а и на амплитуду перехода от а к я. Используя наше сокращенное обозначение, полную амплитуду перехода от s к х можно записать в виде
Можно сэкономить место, использовав знак суммы:
Чтобы, пользуясь этим методом, проводить какие-то вычисления, надо, естественно, знать амплитуду перехода из одного места в другое. Я приведу пример типичной амплитуды. В ней не учтены некоторые детали, такие, как поляризация света или спин электрона, а в остальном она абсолютно точна. С ее помощью вы сможете решать задачи, куда входят различные сочетания щелей. Предположим, что частица с определенной энергией переходит в пустом пространстве из положения r1 в положение r2. Иными словами, это свободная частица: на нее не действуют никакие силы. Отбрасывая численный множитель впереди, амплитуду перехода от r1 к r2 можно записать так:
где r12=r2– r1 а р — импульс частицы, связанный с ее энергией Е релятивистским уравнением
или нерелятивистским уравнением
p2/2m = Кинетическая энергия.
Уравнение (1.7) в итоге утверждает, что у частицы есть волновые свойства, что амплитуда распространяется как волна с волновым числом, равным импульсу, деленному на
В общем случае в амплитуду и в соответствующую вероятность входит также и время. В большинстве наших первоначальных рассуждений будет предполагаться, что источник испускает частицы с данной энергией беспрерывно, так что о времени не нужно будет думать. Но, вообще-то говоря, мы вправе заинтересоваться и другими вопросами. Допустим, что частица испущена в некотором месте Р в некоторый момент и вы хотите знать амплитуду того, что она окажется в каком-то месте, скажем г, в более позднее время. Это символически можно представить в виде амплитуды <r, t = t1 P, t= 0>. И ясно, что она зависит и от r, и от t. Помещая детектор в разные места и делая измерения в разные моменты времени, вы получите разные результаты. Эта функция r и t, вообще говоря, удовлетворяет дифференциальному уравнению, которое является волновым уравнением. Скажем, в нерелятивистском случае это уравнение Шредингера. Получается волновое уравнение, аналогичное уравнению для электромагнитных волн или звуковых волн в газе. Однако надо подчеркнуть, что волновая функция, удовлетворяющая уравнению, не похожа на реальную волну в пространстве; с этой волной нельзя связать никакой реальности, как это делается со звуковой волной.
Хотя, имея дело с одной частицей, можно начать пытаться мыслить на языке «корпускулярных волн», но ничего в этом хорошего нет, потому что если, скажем, частиц не одна, а две, то амплитуда обнаружить одну из них в r1 а другую в r2 не есть обычная волна в трехмерном пространстве, а зависит от шести пространственных переменных r1и r2. Когда частиц две (или больше), возникает потребность в следующем добавочном принципе. Если две частицы не взаимодействуют, то амплитуда того, что одна частица совершит что-то одно, а другая сделает что-то другое, есть произведение двух амплитуд — амплитуд того, что две частицы проделали бы это по отдельности. Например, если <а|s1>есть амплитуда того, что частица 1 перейдет из s1 в а, а <b|s2> — амплитуда того, что частица 2 перейдет из s2 в b, то амплитуда того, что оба эти события произойдут вместе, есть