Вход/Регистрация
Фейнмановские лекции по физике. 8. Квантовая механика I
вернуться

Фейнман Ричард Филлипс

Шрифт:

Для случая частиц со спином 1, у которых бывает только тройка базисных состояний (у высших спинов их больше), математическая ситуация напоминает то, что мы видели в век­торной алгебре. Каждый вектор может быть представлен тремя числами — компонентами вдоль осей х, у и z. Иначе говоря, всякий вектор может быть разложен на три «базисных» вектора, т. е. векторы вдоль этих трех осей. Но предположим, что кто-то другой решает выбрать другую тройку осей: x', y' и z'. Чтобы представить любой частный вектор, он воспользуется другими (а не теми, что мы) числами. Его выкладки не будут похожи на наши, но окончательный итог окажется таким же. Мы это уже рассматривали раньше и знаем правила преобразования векто­ров от одной тройки осей к другой.

Вам может захотеться увидать, как действуют квантовомеханические преобразования, и самим попробовать их проде­лать; для этого мы приведем здесь без вывода матрицы преобра­зований амплитуд спина 1 от представления S к другому пред­ставлению Т для разных взаимных ориентации фильтров S и Т. (В следующих главах мы покажем, как получаются эти результаты.)

Первый случай. У прибора Т ось у (вдоль которой дви­жутся частицы) та же самая, что и у S, но Т повернут вокруг общей оси у на угол а (на фиг. 3.6). (Чтобы быть точными, ука­жем, что в приборе Т установлена система координат х' , у', z', связанная с координатами х, у, z прибора S формулами z'=zcosa+хsina; х'=хcosa- zsina; у' = у.) Тогда ам­плитуды преобразований таковы:

(3.38)

Второй случай. Прибор Т имеет ту же ось г, что и S, но повернут относительно оси z на угол b. (Преобразование координат: z'=z; х' =xcosb+ysinb; у'=уcosb- хsinb.) Тогда амплитуды преобразований суть

(3.39)

Заметьте, что любые вращения Т можно составить из опи­санных двух вращений.

Если состояние j определяется тремя числами

и если то же состояние описывается с точки зрения Т тремя числами

тогда коэффициенты <jT| iS>из (3.38) и (3.39) дают преоб­разования, связывающие Сi и С'i. Иными словами. С; очень походят на компоненты вектора, который с точек зрения S и Т выглядит по-разному.

Только у частицы со спином 1 (потому что ей требуются как раз три амплитуды) есть такое тесное соответствие с векторами. Здесь во всех случаях имеется тройка чисел, которая обязана преобразовываться при изменениях координат определенным известным образом. И действительно, здесь есть и такая сово­купность базисных состояний, которая преобразуется в точ­ности, как три компоненты вектора. Три комбинации

преобразуются в С'х, С'у, С'zкак раз так же, как х, у, z преобра­зуются в х', у', z' . [Вы можете проверить это с помощью законов преобразований (3.38) и (3.39).] Теперь вы понимаете, почему частицу со спином 1 часто называют «векторной частицей».

§ 8. Другие случаи

Мы начали с того, что подчеркнули, что наши рассуждения о частице со спином 1 явятся прототипом любых квантовомеханических задач. Обобщения требует только количество состояний. Вместо тройки базисных состояний в других случаях может потребоваться n базисных состояний. Форма наших основных законов (3.27) останется той же, если только понимать, что i и j должны пробегать по всем n базисным состояниям. Любое явление можно проанализировать, задав амплитуды того, что оно начинается с любого базисного состояния и кончается тоже в любом базисном состоянии, а затем просуммировав по всей полной системе базисных состояний. Можно использовать лю­бую подходящую систему базисных состояний, и каждый впра­ве выбрать ту, которая ему по душе; связь между любой парой базисов осуществляется матрицей преобразований nXn. Позже мы подробнее расскажем об этих преобразованиях.

Наконец, мы пообещали рассказать о том, что надо делать, если атомы прямо из печи проходят через какой-то прибор А и затем анализируются фильтром, который отбирает состояние c. Вы не знаете, каково то состояние j, в котором они входят в прибор. Лучше всего, наверное, было бы, если бы вы, не думая пока об этой проблеме, занимались такими задачами, в ко­торых вначале имеются только чистые состояния. Но если уж вы на этом настаиваете, так вот как расправляются с этой про­блемой.

Прежде всего вы должны быть в состоянии сделать разумные предположения о том, каким образом распределены состояния в атомах, которые выходят из печи. Например, если в печи нет чего-либо «особого», то разумно предположить, что атомы по­кидают печь, будучи «ориентированы» как попало. Квантовомеханически это соответствует вашему утверждению о том, что о состояниях вы не знаете ничего, кроме того, что треть ато­мов находится в состоянии (+S), треть — в состоянии (0S) и треть — в состоянии (-S). Для пребывающих в состоянии (+S) амплитуда пройти сквозь А есть <c|А|+S>, а вероят­ность |<c|А|+S>|2. То же и для других. Общая вероят­ность тогда равна

  • Читать дальше
  • 1
  • ...
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: