Вход/Регистрация
  1. библиотека Ebooker
  2. Древние книги
  3. Книга "Фейнмановские лекции по физике. 8. Квантовая механика I"
Фейнмановские лекции по физике. 8. Квантовая механика I
Читать

Фейнмановские лекции по физике. 8. Квантовая механика I

Фейнман Ричард Филлипс

Фейнмановские лекции по физике [8]

Древние книги

:

прочая старинная литература

.
Аннотация
«Фейнмановские лекции по физике» — курс лекций по общей физике, выпущенный американскими физиками — Ричардом Фейнманом, Робертом Лейтоном и Мэттью Сэндсом. Одна из наиболее известных и популяризованных технических работ Фейнмана. Считается канонической интерпретацией современной физики, в том числе её математических аспектов, электромагнетизма, Ньютоновской механики, квантовой физики, вплоть до взаимосвязей физики с другими науками.

Глава 1

АМПЛИТУДЫ ВЕРОЯТНОСТИ

§ 1.Законы композиции амплитуд

§ 2.Картина интерференции от двух щелей

§ З. Рассеяние на кристалле

§ 4. Тождественные частицы

Повторить:гл. 37 (вып. 3) «Кван­товое поведение» ; гл. 38 (вып. 3) « Соотношение между волновой и корпускулярной точками зрения»

§ 1. Законы композиции амплитуд

Когда Шредингер впервые открыл правиль­ные законы квантовой механики, он написал уравнение, которое описывало амплитуду ве­роятности обнаружения частицы в различ­ных местах. Это уравнение было очень похоже на уравнения, которые были уже изве­стны классическим физикам, они ими пользо­вались, чтобы описать движение воздуха в звуковой волне, распространение света и т. д. Так что в начале развития квантовой механики большую часть времени люди занимались ре­шением этого уравнения. Но в то же время началось (в частности, благодаря Борну и Дираку) понимание тех фундаментально новых идей, которые лежали в основе кванто­вой механики. По мере дальнейшего ее разви­тия выяснилось, что в ней есть много такого, что прямо в уравнении Шредингера не содер­жится,— таких вещей, как спин электрона и различные релятивистские явления. Все курсы квантовой механики по традиции начинают с того же самого, повторяя путь, пройденный в историческом развитии предмета. Сперва долго изучают классическую механику, чтобы потом понять, как решается уравнение Шредингера. Затем столь же долго получают различные решения. И лишь после деталь­ного изучения этого уравнения переходят к «высшим» вопросам, таким, как спин электрона.

Сначала мы тоже считали, что лучше всего закончить эти лекции, показав, как решаются уравнения классической физики в различных сложных случаях, таких, как опи­сание звуковых волн в замкнутом пространстве, типы элек­тромагнитного излучения в цилиндрических полостях и т. д. Таков был первоначальный план этого курса. Но затем мы решили отказаться от этого плана и вместо этого дать введение в квантовую механику. Мы пришли к заключе­нию, что то, что обычно именуют «высшими» разделами квантовой механики, на самом деле совсем простая вещь. Нужная для этого математика чрезвычайно проста — требуются лишь несложные алгебраические операции, никаких дифферен­циальных уравнений не нужно (или в крайнем случае нужны самые простые). Проблема только в том, чтобы перепрыгнуть через одно препятствие: усвоить, что мы больше не имеем права детально описывать поведение частиц в пространстве. И вот этим-то мы и собираемся заняться: рассказать вам о том, что обычно называют «высшими» разделами квантовой механики. Но уверяю вас, это самые что ни на есть простые (в полном смысле этого слова), но в то же время самые фундаментальные ее части. Честно говоря, это педагогический эксперимент, и, насколько нам известно, он никогда раньше не ставился.

Конечно, здесь есть своя трудность: квантовомеханическое поведение вещей чрезвычайно странно. Никто не может пола­гаться на то, что его ежедневный опыт даст ему интуитивное, грубое представление о том, что должно произойти. Так что этот предмет можно представить двояким образом: можно либо довольно грубо , описать, что происходит — сообщать более или менее подробно, что случится, но не формулировать точных законов, либо же можно приводить и точные законы в их абстрактном виде. Но тогда эта абстракция приведет к тому, что вы не будете знать, к чему физически она относится. Этот способ не годится, потому что он совершенно отвлеченный, а от первого способа будет оставаться неприятный осадок, потому что никогда не будет точно известно, что верно, а что нет. И мы не знаем, как эту трудность обойти. С этой проблемой мы уже сталкивались раньше [гл. 37 и 38 (вып. 3)1. В гл. 37 изложение относительно строгое, а в гл. 38 дано лишь грубое описание раз­личных явлений. Теперь мы попытаемся найти золотую сере­дину.

Мы начнем эту главу с некоторых общих квантовомеханических представлений. Кое-какие из этих утверждений будут со­вершенно точными, иные же точны лишь частично. При изложении нам будет трудно отмечать, которые из них какие, но к тому времени, когда вы дочитаете книжку до конца, вы уже сами будете понимать, оглядываясь назад, какие части устояли, а какие оказались только грубым объяснением. Главы, которые последуют за этой, не будут столь неточными. Одна из причин, почему мы пытаемся в последующих главах быть как можно более точными, состоит в том, что таким образом мы сможем продемонстрировать одно из самых прекрасных свойств кван­товой механики — как много в ней удается вывести из столь малого.

Мы опять начинаем с выяснения свойств суперпозиции, наложения, амплитуд вероятностей. Для примера мы сошлем­ся на опыт, описанный в гл. 37 (вып. 3) и еще раз показанный здесь на фиг. 1.1.

Фиг. 1.1. Интерференционный опыт с электронами.

Имеется источник частиц s, скажем электронов; дальше стоит стенка, в которой имеются две щели; за стенкой помещен детектор; он находится где-то в точке х. Мы спраши­ваем: какова вероятность того, что в точке х будет обнаружена частица? Наш первый общий принцип квантовой механики заключается в том, что вероятность того, что частица достигнет точки х, выйдя из источника s, может быть численно представле­на квадратом модуля комплексного числа, называемого ампли­тудой вероятности, в нашем случае — «амплитудой того, что частица из s попадет в х». К этим амплитудам мы будем прибе­гать так часто, что удобно будет использовать сокращенное обозначение, изобретенное Дираком и повсеместно применяемое в квантовой механике, чтобы отображать это понятие. Мы запишем амплитуду вероятности так:

<Частица попадает в х|Частица покидает s> (1.1)

Иными словами, две скобки <> — это знак, эквивалентный словам «амплитуда (вероятности) того, что»; выражение справа от вертикальной черточки всегда задает начальное условие, а то, что слева,— конечное условие. А иногда будет удобно еще сильнее сокращать, описывая начальные и конечные условия одной буквой. Например, амплитуду (1.1) можно при случав записать и так:

<x|s>. (1.2)

Надо подчеркнуть, что подобная амплитуда — это, конечно, всего-навсего число — комплексное число.

В гл. 37 (вып. 3) мы уже видели, что, когда частица может достичь детектора двумя путями, итоговая вероятность не есть сумма двух вероятностей, а должна быть записана в виде квад­рата модуля суммы двух амплитуд. Мы обнаружили, что ве­роятность того, что электрон достигнет детектора при обеих открытых амбразурах, есть

(1.3)

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • ...
Купить и скачать
в официальном магазине Литрес

Фейнмановские лекции по физике

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Фейнмановские лекции по физике. 5. Электричество и магнетизм
Фейнмановские лекции по физике. 6. Электродинамика
Фейнмановские лекции по физике. 7. Физика сплошных сред
Фейнмановские лекции по физике. 8. Квантовая механика I
Фейнмановские лекции по физике. 9. Квантовая механика II

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: