Вход/Регистрация
Фейнмановские лекции по физике. 7. Физика сплошных сред
вернуться

Фейнман Ричард Филлипс

Шрифт:

Фиг. 36.1. Электрическое по­ле в полости в диэлектрике за­висит от формы полости.

Чтобы найти наведенный дипольный момент атома внутри диэлектрика, необходимо знать электрическое поле, которое действует на отдельный атом. В свое время мы использовали приближение, пригодное во многих случаях; было предполо­жено, что на атом действует поле, которое было бы в центре небольшой полости, оставшейся после удаления этого атома (считая, что дипольные моменты всех других соседних атомов при этом не изменяются). Вспомните также, что электрическое поле в полости внутри поляризованного диэлектрика зависит от формы этой полости. Эти результаты мы подытожили на фиг. 36.1. В тонкой дискообразной полости, перпендикулярной направлению поляризации, электрическое поле, как было пока­зано с помощью закона Гаусса, имеет вид

Еполость=Едиэл+P/e0 (дискообразная полость). С другой стороны, используя равенство нулю ротора, мы нашли, что электрическое поле внутри и вне иглообразной полости одно и то же:

Еполость= Едиэл (иглообразная полость).

Наконец, мы обнаружили, что величина электрического поля внутри сферической полости лежит между этими двумя значе­ниями:

Еполость=Едиэл+1/3P/e0 (сферическая полость). (36.3)

Это и было то поле, которым мы пользовались, рассуждая о том, что происходит с атомами внутри поляризованного диэлект­рика.

Попробуем обсудить аналогичную задачу в случае магне­тизма. Легче всего и короче просто сказать, что М — магнит­ный момент единицы объема (намагниченность) — в точности аналогичен Р — электрическому дипольному моменту единицы объема (поляризация) и что, следовательно, отрицательная дивергенция М эквивалентна «плотности магнитных зарядов» rm, что бы это ни означало. Но беда в том, что в физическом мире не существует такой штуки, как «магнитный заряд». Как мы знаем, дивергенция В всегда равна нулю. Это, однако, не поме­шает нам провести искусственную аналогию и написать

СM=-rm, (38.4)

но нужно понимать, что rm— величина чисто математическая. Затем мы можем все делать полностью аналогично электроста­тике и использовать все старые электростатические уравнения. К этому часто прибегают. Когда-то такая аналогия считалась даже правильной. Ученые верили, что rmпредставляет плотность «магнитных полюсов». Однако сейчас нам известно, что намаг­ничивание материала происходит за счет токов, циркулирую­щих внутри атомов, т. е. либо вращения электронов, либо движения их в атоме. Следовательно, с физической точки зре­ния лучше описывать намагничивание только при помощи реальных атомных токов, а не вводить плотность каких-то мистических «магнитных зарядов». Эти токи иногда называ­ются еще «амперовскими», ибо Ампер первый предположил, что магнетизм вещества происходит за счет циркуляции атом­ных токов.

Микроскопические плотности токов в намагниченном ве­ществе, разумеется, очень сложны. Их величина зависит от местоположения в атоме: в некоторых местах они велики, в других — малы, в одной части они текут в одну сторону, а в другой — в противоположную (точно так же, как микроскопи­ческое электрическое поле, которое внутри диэлектрика в выс­шей степени неоднородно). Однако во многих практических задачах нас интересуют только поля вне вещества или средние магнитные поля внутри него, причем под средним мы имеем в виду усреднение по очень многим атомам. В таких макро­скопических задачах магнитное состояние вещества удобно описывать через намагниченность М — средний магнитный момент единицы объема. Я расскажу сейчас, как атомные токи в намагниченном веществе вырастают до макроскопических токов, которые связаны с М.

Разобьем плотность тока j, которая является реальным источником магнитных полей, на разные части; одна из них описывает циркулирующие токи атомных магнитиков, а ос­тальные — другие возможные токи. Обычно удобнее делить токи на три части. В гл. 32 мы делали различие между токами, свободно текущими по проводникам, и токами, обусловленными движением связанных зарядов в диэлектрике то туда, то сюда. В гл. 32, §2, мы писали

j=j пол + j др ,

причем величина jпол представляла токи от движения связанных зарядов в диэлектриках, a jдp — все другие токи. Пойдем дальше. Я хочу из jр выделить часть jмar, которая описывает усредненные токи внутри намагниченных материалов, и до­полнительный член, который мы будем называть jnpов и который будет описывать все остальное. Он, вообще говоря, относится к токам в проводниках, но может описывать и другие токи, например токи зарядов, движущихся свободно через пустое пространство. Таким образом, полную плотность тока мы будем писать в виде

j =jпол+jмaг+jnpoв. (36.5)

Разумеется, именно этот ток входит в уравнение Максвелла с ротором В;

Теперь мы должны связать ток jмaг с величиной вектора на­магниченности М. Чтобы вы представляли, к чему мы стре­мимся, скажу, что должен получиться такой результат:

  • Читать дальше
  • 1
  • ...
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: