Вход/Регистрация
Фейнмановские лекции по физике. 9. Квантовая механика II
вернуться

Фейнман Ричард Филлипс

Шрифт:

е– мин+E+мин.

Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диа­граммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электро­нов и дырок.

Фиг. 12.5. Диаграмма энер­гетических уровней для электронов и дырок.

Как создается пара электрон—дырка? Есть несколько спо­собов. Например, световые фотоны (или рентгеновские лучи)

могут поглотиться и обра­зовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интен­сивности света. Если при­жать к торцам кристалла два электрода и прило­жить «смещающее» напря­жение, то электроны и дырки притянутся к элек­тродам. Ток в цепи будет пропорционален силе све­та. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон — дырка могут образоваться также части­цами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон — дырка. Подобные явления сотнями и тыся­чами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разы­грывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчи­ков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при ком­натных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки

I могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупро­водников разумных размеров (порядка сантиметра) можно по­лучать большой чистоты.

До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон — дырка. Энергией пару может снаб­дить тепловая энергия кристалла. Тепловые колебания кристал­ла могут передавать паре свою энергию, вызывая «самопроиз­вольное» рождение пар.

Вероятность (в единицу времени) того, что энергия, дости­гающая величины энергетической щели Eщели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр(-Ещеяи/kТ), где Т—температура, а k— постоянная Больц­мана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положи­тельные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.

Если количество электронов в единице объема есть Nn (n означает негативных, или отрицательных, носителей), а плот­ность положительных (позитивных) носителей Np, то вероят­ность того, что за единицу времени электрон с дыркой встре­тятся и проаннигилируют, пропорциональна произведению NnNp. При равновесии эта скорость должна равняться ско­рости, с какой образуются пары. Стало быть, при равновесии произведение NnNpдолжно равняться произведению некото­рой постоянной на больцмановский множитель

Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.

Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, Nn= Nр. Значит, каждое из этих чисел должно с температурой меняться как

. Изменение мно­гих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от тем­пературы. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.

При комнатной температуре kТ составляет около 1/40 эв. При таких температурах уже есть достаточно дырок и электро­нов чтобы обеспечить заметную проводимость, тогда как, ска­жем, при 30°К (одной десятой комнатной температуры) прово­димость незаметна. Ширина щели у алмаза равна 6—7 эв, по­этому при комнатной температуре алмаз — хороший изолятор.

§ 2. Примесные полупроводники

До сих пор мы говорили только о двух путях введения доба­вочных электронов в кристаллическую решетку, которая во всем остальном совершенно идеальна. Один путь — это впрыс­нуть электрон от внешнего источника, а другой — выбить связанный электрон из нейтрального атома, сотворив одновре­менно и электрон и дырку. Но можно внедрить электроны в зону проводимости кристалла совершенно иным способом. Представим себе кристалл германия, в котором один из атомов германия заменен атомом мышьяка. У атомов германия валент­ность равна 4, и кристаллическая структура контролируется четырьмя валентными электронами. А у мышьяка валентность равна 5. И вот оказывается, что отдельный атом мышьяка в состоянии засесть в решетке германия (потому что габариты у него как раз такие, как надо), но при этом он будет вынужден действовать как четырехвалентный атом, тратя четыре валент­ных электрона из своего запаса на создание кристаллических связей и отбрасывая пятый. Этот лишний электрон привязан к нему очень слабо — энергия связи менее 1/10 эв. При комнат­ной температуре электрон с легкостью раздобудет такую не­большую энергию у тепловой энергии кристалла и отправится на свой страх и риск блуждать по решетке на правах свобод­ного электрона. Примесный атом наподобие мышьяка назы­вается донорным узлом, потому что он может снабдить кристалл отрицательным носителем. Если кристалл германия выращи­вается из расплава, куда было добавлено небольшое количество мышьяка, то мышьяковые донорские пункты распределятся по всему кристаллу и у кристалла появится определенная плот­ность внедренных отрицательных носителей.

Могло бы показаться, что малейшее электрическое поле, приложенное к кристаллу, смело бы эти носители прочь. Но этого не случится, ведь каждый атом мышьяка в теле кристалла заряжен положительно. Чтобы весь кристалл оставался нейт­ральным, средняя плотность отрицательных носителей — элект­ронов — должна быть равна плотности донорных узлов. Если вы приложите к граням этого кристалла два электрода и подключите их к батарейке, пойдет ток; но если с одного конца уносятся электроны-носители, то на другой конец должны по­ступать свежие электроны проводимости, так что средняя плотность электронов проводимости остается все время пример­но равной плотности донорных узлов.

  • Читать дальше
  • 1
  • ...
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: