Вход/Регистрация
Фейнмановские лекции по физике. 6. Электродинамика
вернуться

Фейнман Ричард Филлипс

Шрифт:

Посмотрим, согласуются ли такие поля с уравнениями Мак­свелла. Сначала нарисуем одну из тех петель, которыми мы пользовались для вычисления контурного интеграла, скажем прямоугольник Г2 на фиг. 18.6.

Фиг. 18.6. То же, что на фиг. 18.3 (вид сбоку).

Заметьте, что одна сторона прямоугольника проходит в области, где есть поля, а другая — в области, до которой поля еще не дошли. Через эту петлю проходит какой-то магнитный поток. Если он изменяется, должна появиться э. д. с. вдоль петли. Если волновой фронт движется, мы будем иметь меняющийся магнитный поток, поскольку поверхность, внутри которой существует поле В, непрерывно увеличивается со скоростью v. Поток внутри Г2 равен произведению В на ту часть поверхности внутри Г2) где есть магнитное поле. Скорость изменения потока (посколь­ку величина В постоянна) равна величине поля, умноженной на скорость изменения поверхности. Скорость изменения по­верхности найти легко. Если ширина прямоугольника Г2 равна L, то поверхность, в которой В существует, меняется как LvDt за отрезок времени Dt (см. фиг. 18.6). Скорость изме­нения потока тогда равна BLv. По закону Фарадея она должна быть равна контурному интегралу от Е вокруг Г2, который есть просто EL. Мы получаем равенство

(18.10)

Таким образом, если отношение Е к В равно v, то рассматри­ваемые нами поля будут удовлетворять уравнению Фарадея. Но это не единственное уравнение; у нас есть еще одно, связывающее Е и В:

(18.11)

Чтобы применить это уравнение, посмотрим на вид сверху, изображенный на фиг. 18.5. Мы уже видели, что это уравнение дает нам значение В вблизи заряженного листа. Кроме того, для любой петли, нарисованной вне листа, но позади волнового фронта, нет ни ротора В, ни j или меняющегося поля Е, так что уравнение там справедливо. А теперь посмотрим, что происходит в петле Г1, которая пересекает волновой фронт, как показано на фиг. 18.5. Здесь нет токов, поэтому уравнение (18.11) можно записать в интегральной форме так:

(18.12)

Контурный интеграл от В есть просто произведение В на L. Скорость изменения потока Е возникает только благодаря продвигающемуся волновому фронту. Область внутри Г1, где Е не равно нулю, увеличивается со скоростью vL. Правая сто­рона (18.12) тогда равна vLE. Уравнение это приобретает вид

(18.13)

Мы имеем решение, когда поля В и Е постоянны за фрон­том, причем оба направлены под прямыми углами к направле­нию, в котором движется фронт, и под прямыми углами друг к другу. Уравнения Максвелла определяют отношение Е к В. Из (18.10) и (18.13) получаем

Но одну минутку! Мы нашли два разных выражения для отно­шения Е/В. Может ли такое поле, как мы описываем, дей­ствительно существовать? Имеется лишь одна скорость v, для которой оба уравнения могут быть справедливы, а именно v = с. Волновой фронт должен передвигаться со скоростью с. Вот пример, когда электрическое возмущение от тока распро­страняется с определенной конечной скоростью с.

А теперь спросим, что произойдет, если мы внезапно оста­новим заряженный лист, после того как он двигался в течение короткого времени Т? Увидеть, что случится, можно с помощью принципа суперпозиции. У нас был ток, равный нулю, а затем его внезапно включали. Мы знаем решение для этого случая. Теперь мы собираемся добавить другой ряд полей. Мы берем другой заряженный лист и внезапно начинаем его двигать в противоположном направлении с той же скоростью, только спустя время Т после начала движения первого листа. Полный ток от двух листов вместе сначала равен нулю, потом он вклю­чается в течение времени Т, затем выключается снова, потому что оба тока погашаются. Так мы получаем прямоугольный «импульс» тока.

Новый отрицательный ток создает такие же поля, как и по­ложительный, но с обратными знаками и, разумеется, с запаздыванием во времени Т. Волновой фронт по-прежнему движется со скоростью с. В момент времени t он достигает расстояния x=±c(t- Т) (см. фиг. 18.4, б). Итак, мы имеем два «куска» поля, перемещающихся со скоростью с (см. фиг. 18.4, а и б). Соединенные поля будут такими, как показано на фиг. 18.4, в. Для х>сt поля равны нулю, между х=с(t-Т) и x=ct они постоянны (со значениями, которые мы нашли выше), и для x<c(t-Т) они снова равны нулю.

Короче говоря, мы получаем маленький кусочек поля тол­щиной сТ, который покинул заряженный лист и передвигается через все пространство сам по себе. Поля «оторвались»; они распространяются свободно в пространстве и больше не связаны каким-то образом с источником. Куколка превратилась в бабочку!

Как же эти совокупности электрического и магнитного полей могут сохранять сами себя? Ответ: За счет сочетания эффектов из закона Фарадея СXE=-dВ/dt и нового члена, добавлен­ного Максвеллом c2СX B=dE/dt. Они не могут не сохранять себя. Предположим, что магнитное поле исчезло бы. Тогда появилось бы меняющееся магнитное поле, которое создавало бы электрическое поле. Если бы это электрическое поле попы­талось исчезнуть, то изменяющееся электрическое поле создало бы магнитное поле снова. Следовательно, за счет непрерывного взаимодействия — перекачивания туда и обратно от одного поля к другому — они должны сохраняться вечно. Они не могут исчезнуть. Они сохраняются, вовлеченные в общий танец — одно поле создает другое, а второе создает первое,— распространяясь все дальше и дальше в пространстве.

§ 5. Скорость света

У нас есть волна, которая уходит от материального источ­ника и движется со скоростью с (это скорость света). Вернемся немного назад. Исторически не было известно, что коэффициент c в уравнениях Максвелла тот же, что и скорость распростра­нения света. Это была просто константа в уравнениях. Мы на­звали ее с c самого начала, так как знали, что в конце концов должно получиться. Мы не думаем, что было бы разумнее сна­чала заставить вас выучить формулы с разными константами, а затем вернуться обратно и подставить с повсюду, где оно должно стоять. С точки зрения электричества и магнетизма, однако, мы прямо начинаем с двух констант e0 и с2, которые появляются в уравнениях электростатики и магнитостатики:

  • Читать дальше
  • 1
  • ...
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: