Шрифт:
Заметьте также, что даже после того, как вся деятельность в источнике прекратилась и все заряды исчезли, а токи сошли на нет, наш ломтик полей продолжает свое путешествие через пространство. Получается распределение электрических и магнитных полей, которое существует независимо от токов и зарядов. Это и есть тот новый эффект, который следует из полной системы уравнений Максвелла. Мы можем, если нужно, представить только что проделанный анализ в строго математической форме, написав, что электрическое поле в данном месте и в данное время пропорционально току в источнике, но не в то же время, а в более ранний период [t-(x/с)]. Можно написать
Вас удивит, если я скажу, что мы уже выводили это уравнение раньше (с другой точки зрения), когда говорили о теории показателя преломления. Тогда нам нужно было представить себе, какие поля создаст слой колеблющихся диполей в тонком плоском диэлектрике, если диполи приводятся в движение электрическим полем падающей электромагнитной волны. Задача наша состояла в расчете комбинированного поля начальной волны и волн, излучаемых колеблющимися диполями. Как же мы смогли тогда рассчитать поля, создаваемые движущимися зарядами, не зная уравнений Максвелла? Мы тогда приняли в качестве исходной (без вывода) формулу для полей излучения, создаваемых на больших расстояниях от ускоряемого точечного заряда. Если вы заглянете в гл. 31 (вып. 3), то увидите, что выражение (31.10) — это как раз наше выражение (20.3), которое мы только что написали. Хотя прежний наш вывод относился только к большим расстояниям от источника, теперь мы видим, что тот же результат верен и вблизи источника.
Сейчас мы хотим взглянуть в общем виде на поведение электрических и магнитных полей в пустом пространстве вдалеке от источников, т. е. от токов и зарядов. Очень близко от них (так близко, что источники за время запаздывания передачи не успевают сильно измениться) поля очень похожи на те, которые получились у нас в электростатике или магнитостатике. Но если перейти к таким большим расстояниям, что запаздывание станет заметным, то природа полей может радикально отличаться от тех решений, которые мы нашли. Когда поля значительно удаляются ото всех источников, они начинают в некотором смысле приобретать свой собственный характер. Так что мы вправе приступить к обсуждению поведения полей в области, где нет ни токов, ни зарядов.
Предположим, что нас интересует род полей, которые могут существовать в областях, где и r и j равны нулю. В гл. 18 мы видели, что физику уравнений Максвелла можно также выразить на языке дифференциальных уравнений для скалярного и векторного потенциалов:
(20.4)
(20.5)
Если r и j равны нулю, то эти уравнения упрощаются:
(20.6)
(20.7)
Стало быть, в пустом пространстве и скалярный потенциал j, и каждая компонента векторного потенциала А удовлетворяют одному и тому же математическому уравнению. Пусть буквой y (пси) мы обозначили любую из четырех величин j, Ах, Ау, Аг; тогда нам нужно изучить общие решения уравнения
(20.8)
Его называют трехмерным волновым уравнением — трехмерным потому, что функция y может в общем случае зависеть от х, у и z и следует учитывать изменения по каждой из этих координат. Это становится ясным, если мы выпишем явно три члена оператора Лапласа:
(20.9)
В пустом пространстве электрические и магнитные поля Е и В тоже удовлетворяют волновому уравнению. Так, поскольку B=СXА, дифференциальное уравнение для В можно получить, взяв ротор от уравнения (20.7). Раз лапласиан — это скалярный оператор, то порядок операций вычисления лапласиана и ротора можно переставлять:
Точно так же можно переставлять и вычисление rot и d/dt:
Из этого мы получаем следующее дифференциальное уравнение
для В:
(20.10)
Тем самым выясняется, что компонента магнитного поля В удовлетворяет трехмерному волновому уравнению. Подобно этому, из того факта, что Е=-Сj-dAJdt, следует, что электрическое поле Е в пустом пространстве удовлетворяет трехмерному волновому уравнению
(20.11)
Все наши электромагнитные поля подчиняются одному и тому же уравнению (20.8). Можно еще спросить: каково самое общее решение этого уравнения? Однако прежде, чем решать этот трудный вопрос, сначала посмотрим, что можно сказать в общем случае о тех решениях, в которых по у и по z ничего не меняется. (Всегда сначала беритесь за простые случаи, чтобы было видно, чего следует ожидать, а уж потом можете переходить к случаям посложней.) Предположим, что величина полей зависит только от х, так что по у и по z поля не меняются. Мы, следовательно, опять рассматриваем плоские волны и должны ожидать, что получатся те же результаты, что и в предыдущей главе. И мы действительно получим в точности те же самые ответы. Вы можете спросить: «Но зачем снова делать то же самое?» Это важно, во-первых, потому, что мы не доказали, что найденные нами волны представляют собой самое общее решение для плоских волн, и, во-вторых, потому что наши поля произошли от источника тока особого вида. Сейчас мы хотели бы выяснить такой вопрос: каков самый общий вид одномерной волны в пустом пространстве? Мы не узнаем этого, если будем рассматривать тот или иной источник особого вида, нам нужна большая общность. Кроме того, на этот раз мы будем работать не с интегральной формой уравнений, а с дифференциальной. Хотя итог одинаков, это прекрасный случай поупражняться в выкладках и убедиться в том, что не имеет значения, каким путем идти. Вы должны уметь действовать любым путем, потому что, наткнувшись на трудную задачу, вы часто обнаруживаете, что годится лишь один из многих способов расчета.