Вход/Регистрация
Фейнмановские лекции по физике. 6. Электродинамика
вернуться

Фейнман Ричард Филлипс

Шрифт:

Перед нами все еще стоит задача расчета электрического поля и доказательства того, что оно совпадает с (21.1'). Правда, уже чувствуется, что на больших расстояниях ответ получится такой, как надо. Мы знаем, что вдали от источников, где воз­никает распространяющаяся волна, Е перпендикулярно к В (и к r), как на фиг. 21.4, и что с В=Е. Значит, Е пропорциональ­но ускорению р", как и предсказывалось формулой (21.1').

Чтобы получить электрическое поле на всех возможных рас­стояниях, нужно найти электростатический потенциал. Когда мы подсчитывали интеграл токов для А, желая получить (21.18), то сделали приближение: мы пренебрегли малозамет­ным изменением r в члене с запаздыванием. Для электростати­ческого потенциала этого делать нельзя, потому что тогда у нас получилось бы {/r, умноженное на интеграл от плотности за­ряда, т. е. на константу. Такое приближение чересчур грубо. Надо обратиться к высшим порядкам. И вместо того, чтобы пу­таться в этих прямых расчетах высших приближений, можно поступить иначе — определить скалярный потенциал из равен­ства (21.6), используя уже найденное значение векторного по­тенциала. Дивергенция А в этом случае просто равна dAJdz, поскольку Ахи Ayтождественно равны нулю. Дифференцируя точно так же, как это делалось выше при вычислении В, получаем

Или в векторных обозначениях

Из равенства (21.6) получается уравнение для j:

Интегрирование по t просто убирает надо всеми р по одной точке:

(Постоянная интегрирования отвечала бы некому наложенному статическому полю, которое, конечно, может существовать, но мы считаем, что у выбранного нами колеблющегося диполя ста­тического поля нет.) Теперь мы можем из

найти электрическое поле Е. После утомительных (хоть и пря­мых) выкладок [при этом нужно помнить, что p(t-r/с) и его производные по времени зависят от х, у и z через запаздывание r/с] мы получаем

где

(21.27)

Это выглядит довольно сложно, но интерпретируется просто. Вектор р* — это дипольный момент с запаздыванием и с «по­правкой» на запаздывание, так что два члена с р* в (21.26) при малых r дают просто статическое поле диполя [см. гл. 6 (вып. 5), выражение (6.14)]. Когда rвелико, то член с р преобладает над остальными, и электрическое поле пропорционально ускорению зарядов в направлении поперек r и само направлено вдоль

проекции р на плоскость, перпендикулярную к r.

Этот результат согласуется с тем, что мы получили бы, применяя формулу (21.1'). Конечно, эта формула — более об­щая; она годится для любого движения, а не только для мало­заметных движений, для которых запаздывание r/с в пределах всего источника можно считать постоянным [как (21.26)]. Во всяком случае, теперь мы укрепили столбами все наше преж­нее изложение свойств света, за исключением лишь некоторых вопросов из гл. 34 (вып. 3), которые связаны с последней частью выражения (21.26). Мы можем теперь перейти к получению поля быстродвижущихся зарядов. Это приведет нас к релятивист­ским эффектам [гл. 34 (вып. 3)].

§5. Потенциалы движущегося заряда; общее решение Льенара и Вихерта

В предыдущем параграфе мы пошли на упрощение при вы­числении интеграла для А, рассматривая только небольшие скорости. Но при этом мы шли таким путем, которым легко можно прийти и к новым выводам. Поэтому сейчас мы заново предпри­мем расчет потенциалов точечного заряда, движущегося уже, как ему захочется (даже с релятивистской скоростью). Как только мы получим этот результат, у нас в руках окажутся электромагнитные свойства электрических зарядов во всей их полноте. Даже формулу (21.1') можно будет тогда легко полу­чить, взяв только нужные производные. И наш рассказ удастся, наконец, довести до конца. Итак, запаситесь терпе­нием!

Попробуем подсчитать в точке (х1, у1, z1) скалярный по­тенциал j(1), создаваемый точечным зарядом (вроде электро­на), движущимся любым, каким угодно образом. Под «точеч­ным» зарядом подразумевается очень маленький заряженный шарик, такой маленький, как только можно себе представить, с плотностью заряда р(х, у, z). Потенциал j можно найти из (21.15):

(21.28)

На первый взгляд кажется (и почти все так и подумают), что ответ состоит в том, что интеграл от r по такому «точечному» заряду равен просто общему заряду q, т. е. что

Через r'12здесь обозначен радиус-вектор от заряда в точке (2) к точке (7), измеренный в более раннее время (t—r12/c). Эта формула ошибочна.

Фиг. 21.5. «Точечный» заряд (рассматриваемый как неболь­шое распределение зарядов в форме куба), движущийся со скоростью v к точке (1).

Правильный ответ такой:

(21.29)

где vr' — компонента скорости заряда, параллельная r12, т. е. направленная к точке (1). Сейчас я объясню, почему это так. Чтобы легче было следить за моими доводами, я сперва проведу расчет для «точечного» заряда в форме небольшого заряженного кубика, который движется к точке (1) со ско­ростью v(фиг. 21:5). Сторона куба будет а, это число пусть будет много меньше r12 [расстояния от центра заряда до точки (1)].

  • Читать дальше
  • 1
  • ...
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: