Шрифт:
Как видите, остатки 10 и 5 различны; но если записать их в виде дроби, получится 10/16, что равно 5/8. Поэтому в данном методе ответ всегда должен быть представлен в виде дроби.
Мы проделали оба типа вычислений для того, чтобы вы убедились, насколько второй способ легче. Теперь ваша очередь практиковаться:
Пример справа гораздо легче решить в уме. Если вы все еще в этом не уверены, можете разделить обе части исходной задачи на 18 для получения еще более простой задачи: 201 : 3 = 67.
Высматривайте задачи, которые можно подвергнуть делению на 2 дважды, такие как 1652 : 36.
Мне кажется, что проще дважды разделить числа на 2, чем делить каждое из чисел на 4. Теперь рассмотрим случай, когда оба числа оканчиваются на 0. В этой ситуации можно каждое число разделить на 10.
Если оба числа заканчиваются на 5, удвойте их, а затем разделите на 10 для упрощения задачи. Например:
Наконец, если делитель оканчивается на 5, а делимое на 0, умножьте оба на 2, а затем разделите на 10 и далее действуйте так, как мы делали выше.
УПРАЖНЕНИЕ: ДЕЛЕНИЕ НА ДВУЗНАЧНЫЕ ЧИСЛА
Здесь вы найдете разнообразные задачи по делению на двузначные числа, которые проверят ваше ментальное мастерство и умение пользоваться простыми техниками упрощения, которые были объяснены в этой главе. Загляните в конец книги для получения объяснений и сверки ответов.
1. 738 : 17
2. 591 : 24
3. 321 : 79
4. 4268 : 28
5. 7214 : 11
6. 3074 : 18
Как вы уже, наверное, догадались, мне нравится заниматься магией, превращая обычные дроби в десятичные. В случае с дробями, в знаменателе которых есть только одна цифра, лучший способ превратить их в десятичные — это почерпнуть их значения из памяти. Это не так сложно, как кажется. Далее вы увидите, что большинство дробей, числители и знаменатели которых представлены однозначными числами (а также 10 или 11), обладают особыми свойствами, поэтому их сложно забыть. Каждый раз, когда вы можете сократить дробь до уже известного вам значения, это ускорит процесс вычислений.
Уверен, вы уже знаете десятичные эквиваленты для следующих дробей:
1/2 = 0,50;
1/3 = 0,333…;
2/3 = 0,666…
Подобно этому
1/4 = 0,25;
2/4 = 1/2 = 0,50;
3/3 = 0,75.
Дроби с пятерками в знаменателе запомнить легче всего.
1/5 = 0,20;
2/5 = 0,40;
3/5 = 0,60;
4/5 = 0,80.
Дроби с шестерками в знаменателе требуют запоминания только двух новых значений.
1/6 = 0,1666…;
2/6 =1/3 = 0,333…;
3/6 = 1/2 = 0,50;
4/6 = 2/3 = 0,666…;
5/6 = 0,8333…
Через мгновение я вернусь к дробям с семерками в знаменателе. А сейчас дроби с восьмерками в знаменателе, преобразовать которые просто элементарно.
1/8 = 0,125;
2/8 = 1/4 = 0,25;
4/8 = 1/2 = 0,50;
6/8 = 3/4 = 0,75;
Дроби с девятками в знаменателе таят в себе особое волшебство.
где черта над цифрой обозначает бесконечное повторение этой цифры (говорят, что это дробь в периоде). Например, 4/9 = 0,444…
Дроби с десятками в знаменателе нам уже известны.
1/10 = 0,1; 2/10 = 0,2; 3/10 = 0,3;
4/10 = 0,4; 5/10 = 0,5; 6/10 = 0,6;
7/10 = 0,7; 8/10 = 0,8; 9/10 = 0,9.
Дроби со знаменателем 11 легко вычисляются, если вы запомните, что 1/11 = 0,0909.
Дроби со знаменателем 7 действительно выдающиеся. Как только вы запомните, что
Обратите внимание, что последовательность цифр в периоде циклически повторяется в каждой дроби, при этом изменяется лишь начальная цифра последовательности. Ее можно определить путем умножения 0,14 на числитель дроби.