Шрифт:
Например, для дроби 2/7 имеем 2 х 0,14 = 0,28. Поэтому последовательность должна начинаться с 2. Для дроби 3/7 это 3 х 0,14 = 0,42, значит, последовательность начинается с 4.
Другие дроби подчиняются тому же правилу.
Конечно, в процессе решения разнообразных задач вы обязательно столкнетесь с дробями, превышающими 10/11. Поэтому постоянно обдумывайте способы упрощения таких задач. Например, можно упростить дробь 18/34 путем деления числителя и знаменателя на 2, чтобы сократить задачу до 9/17 (ее будет легче решить).
Если знаменатель дроби — четное число, можно упростить дробь, уменьшив ее вдвое, даже если числитель нечетный.
Например,
9/14 = 4,5/7
Деление числителя и знаменателя на 2 сведет проблему к дроби с семеркой в знаменателе. Хотя ранее показанная последовательность дробей не предоставляет десятичного варианта для дроби 4,5/7, как только вы начнете считать, заученное число неожиданно всплывет в памяти.
Как видите, вам не пришлось решать задачу целиком.
Стоит вам разделить 3 на 7, и вы точно произведете огромное впечатление на публику, отбарабанив этот длинный набор цифр почти мгновенно! [4]
Когда делитель заканчивается на 5, то почти всегда умножение на 2, а потом деление на 10 оправдывает себя. Например:
Числа, которые заканчиваются на 25 или 75, надо сначала умножить на 4 и затем разделить на 100.
4
Вычисления происходят следующим образом: 4,5/7 = 4,2/7 + 0,3/7 = 0,6 + 0,1 х 3/7 = 0,6 + 0,1 х 0,428571 = 0,6 + 0,0428571 = 0,6428571. Прим. ред.
Этот трюк можно применять даже в середине расчетов.
Если вам нужно вычислить дробь 3/16, произойдет вот что:
Как только задача сведется к вычислению 14/16, можно привести ее к виду 7/8, что, как известно, равняется 0,875.
Отсюда 3/16 = 0,1875 [5] .
УПРАЖНЕНИЕ: ПРИВЕДЕНИЕ ДРОБЕЙ К ДЕСЯТИЧНОЙ ФОРМЕ
Чтобы решить следующие задачи, не забудьте использовать полученные знания о десятичном виде различных «одноцифровых» дробей. Везде, где это целесообразно, упрощайте дроби, прежде чем преобразовать их в десятичные.
1. 2/5 2. 4/7 3. 3/8 4. 9/12 5. 5/12 6. 6/11
7. 14/24 8. 13/27 9. 18/48 10. 10/14 11. 6/32 12. 19/45
5
Здесь вычисления вновь требуют пояснений: 3/16 = 0,1 х 30/16 = 0,1 х 15/8 = 0,1 х (1 + 7/8) = 0,1 + 0,1 х 7/8 = 0,1 + 0,1 х 0,875 = 0,1 + 0,0875 = 0,1875. Прим. ред.
В последнем разделе мы узнали, как упростить задачи на деление, если числитель и знаменатель поделить на общий множитель. В завершение этой главы обсудим, как определить, является ли одно число делителем другого. Это поможет упростить задачу на деление и ускорить процесс решения многих задач на умножение, а также пригодится, когда мы доберемся до продвинутого умножения, где часто придется искать способы разложить на множители двух-, трех- или даже пятизначные числа. Умение делать это окажется весьма полезным.
Проверить, делится ли число на 2, довольно просто. Вам нужно только определить, является ли последняя цифра четной. Если это 2, 4, 6, 8 или 0, то число целиком делится на 2.
Чтобы протестировать число на делимость на 4, проверьте, делятся ли на 4 две его последние цифры. Число 57 852 кратно 4, потому что 52 = 13 х 4. Число 69 346 не кратно 4, поскольку 46 не делится на 4 без остатка. Это правило работает потому, что 4 делит 100 и, следовательно, любое число, кратное 100.
Таким образом, поскольку 57 800 и 52 делятся на 4, то 4 поделит и их сумму, то есть 57 852.
Аналогично, так как 1000 делится на 8, для проверки кратности 8 достаточно выяснить, делятся ли на 8 последние три цифры числа. Например, для 14 918 надо проверить число 918 на делимость на 8. Однако при делении 918 на 8 имеем остаток (918 : 8 = 114 6/8), из чего делаем вывод, что число 14 918 на 8 не делится. Можно также заметить, что 18 (две последние цифры числа 14 918) не делится на 4, а так как 14 918 не делится на 4, оно не может делиться и на 8.
Когда дело доходит до делимости на 3, предлагаю запомнить одно простое правило: число делится на 3 тогда и только тогда, когда сумма составляющих его цифр делится на 3 (независимо от того, сколько цифр в числе). Чтобы выяснить, делится ли 57 852 на 3, просто сложите 5 + 7 + 8 + 5 + 2 = 27. Так как 27 кратно 3, то и 57 852 будет кратно 3. Столь же удивительное правило справедливо и для делимости на 9. Число делится на 9 тогда и только тогда, когда сумма составляющих его цифр кратна 9. Поэтому 57 852 кратно 9, тогда как число 31 416, сумма цифр которого равна 15, на 9 не делится. Объясняется это правило тем, что числа 1, 10, 100, 1000, 10000 и т. д. всегда на единицу больше кратного 9.
Число делится на 6 только в том случае, если оно четное и делится на 3. Так что кратность 6 легко проверить.
Установить, делится ли число на 5, еще проще. Любое число, независимо от величины, кратно 5 тогда и только тогда, когда оно заканчивается на 5 или 0.
Выяснить делимость на 11 почти так же просто, как на 3 или на 9. Число делится на 11 тогда и только тогда, когда в результате попеременного вычитания и сложения составляющих его цифр вы получите либо 0, либо кратное 11.