Шрифт:
Анализ бесконечно малых
Почему он называется анализом и какое отношение к нему имеют бесконечно малые? Понятие «анализ» указывает, что в математическом анализе решение задачи рассматривается как рабочая гипотеза, после чего проводится анализ того, каким образом стало возможным прийти к этому решению. Одним из наиболее выдающихся учёных, которые использовали этот метод, был Декарт, а истоки метода восходят ко временам Евклида.
Название «анализ бесконечно малых» объясняется использованием величин, связанных с геометрическими элементами. Эти величины делятся произвольное число раз (бесконечное деление), а затем рассматриваются как основные и неделимые составляющие всего. Как вы уже поняли, анализ бесконечно малых восходит к знаменитому методу исчерпывания, придуманному Евдоксом, и был систематически описан математиками XVII столетия, в частности Робервалем, Барроу, Ньютоном и Лейбницем.
Отметим ещё одно важное совпадение. С одной стороны, математика к тому времени превратилась в самостоятельную дисциплину в том смысле, что в ней не использовались модели природы. Скорее наоборот: это природа должна была адаптироваться к математике, что следовало понимать не как гипотезу, а как методологию, позволяющую создать прочную теорию, которая, разумеется, должна была найти практическое применение. Пример: с помощью методов анализа стало возможным определить, что траектория снаряда представляет собой параболу — геометрическую фигуру, чётко определённую на языке функций. Наиболее вероятно, что траектория снаряда не является идеальной параболой, но, перефразируя Торричелли, «тем хуже для снаряда».
Другой важный момент — появление в теоретической физике двух новых понятий: тело и материальная точка. Первое ввёл Декарт, а второе — Ньютон. Яблоко, которое якобы упало на голову Ньютону, было не спелым фруктом, приятным на вкус, а телом конкретных размеров, которое методами анализа можно свести к материальной точке.
Также следует учитывать, что в то время физика носила ярко выраженный прикладной характер: её задачи имели исключительно практическую направленность.
Например, известный оптический закон о том, что угол падения луча равен углу его отражения, очень важен при конструировании оптических приборов, однако эти углы отсчитываются от нормали, проведённой к отражающей поверхности в заданной точке. Если эта поверхность является прямой, к ней достаточно провести перпендикуляр в заданной точке, но если речь идёт о криволинейной поверхности, как в большинстве оптических инструментов, то возникает интересная геометрическая задача. Как показано на рисунке, нормаль к криволинейной поверхности в точке — это прямая, перпендикулярная касательной к кривой в заданной точке, но алгоритм построения касательной к произвольной кривой в то время был неизвестен.
Касательная «прикасается» к кривой в единственной точке. Перпендикуляр к касательной в этой точке, по определению, является нормалью к кривой.
Ещё один пример связан с нахождением максимумов и минимумов. Вернёмся к примеру со снарядом. Очевидна необходимость вычисления максимальной дальности полёта снаряда (а в некоторых случаях — максимальной высоты) в зависимости от угла наклона орудия.
Следующие четыре нерешённые задачи предопределили зарождение математического анализа, или анализа бесконечно малых:
— построение касательной к кривой в точке;
— расчёт максимумов и минимумов функции;
— расчёт квадратур, то есть вычисление площади, ограниченной одной или несколькими кривыми;
— спрямление кривых, то есть вычисление длины кривой между двумя её точками.
Во всех этих задачах присутствуют бесконечно малые величины.
Ньютон и Лейбниц считаются родоначальниками математического анализа, в котором они систематизировали знания, накопленные их предшественниками. Они следовали разными путями, и им обоим пришлось столкнуться с загадками бесконечности, которые они решили каждый по-своему.
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ЭЙЛЕРА
С помощью интегралов можно рассчитывать не только площади плоских фигур, но также длины кривых, объёмы тел, ограниченных произвольными поверхностями, и тел вращения. В общем случае интегралы позволяют найти любое значение, выраженное в виде бесконечной суммы бесконечно малых величин, то есть почти всё что угодно. Сфера практического применения интегралов столь широка, что они образуют отдельный раздел прикладной математики. Вне зависимости от того, где выполняется вычисление интегралов, на маленьких калькуляторах или в мощных компьютерных программах, сложно представить инженера, которому не требовалось бы интегральное исчисление. В 1770 году швейцарский математик Леонард Эйлер (1707–1783) создал трёхтомный труд по интегральному исчислению. В некотором смысле все современные книги по математическому анализу являются всего лишь изменёнными и обновлёнными изданиями этого труда, в котором даже спустя 150 лет после публикации никто не смог найти ни единого недочёта. По этой причине «Интегральное исчисление» Эйлера считается важнейшей работой по математическому анализу из когда-либо написанных.
Обложка первого тома «Интегрального исчисления» Эйлера.
Ньютон
Исаак Ньютон (1643–1727), который считается скорее физиком, чем математиком, внёс чрезвычайно важный вклад в создание математического анализа. Он разработал оригинальную систему решения задач о квадратурах и о спрямлении кривых. Для этого он использовал бесконечные ряды — выражения, которые определяются уравнением, первый член которого содержит изучаемую функцию, а второй — бесконечную сумму функций, имеющих схожее поведение. Например, первым членом следующего уравнения является логарифмическая функция, вторым — сумма бесконечного числа степенных функций, поведение которых известно:
ТАИНСТВЕННАЯ НАУКА
«Математические начала натуральной философии» Ньютона всегда считались непростыми для понимания — это неудивительно, если учесть, что Ньютон умышленно усложнил свою работу.
Как-то раз он признался другу, что поступил так, чтобы «избежать атак со стороны шарлатанов от математики»: предыдущие работы Ньютона, посвящённые природе света, уже подвергались ожесточённой и не всегда оправданной критике. Некоторые из полученных результатов Ньютон и вовсе записал шифром. Следующая последовательность букв и цифр
6а сс d ае 13eff7i 31 9n4о 4q rr 4s 9t 12vx
отнюдь не сложный ключ или числа из компьютерной программы. Это так называемый логогриф — способ шифрования, который Ньютон использовал для описания своего метода анализа флюксий, чтобы Лейбниц не смог прочитать его записи и приписать их авторство себе. Говорят, что последнему понадобилось бы потратить на расшифровку так много сил, что быстрее было бы самостоятельно прийти к аналогичным результатам.