Друзьяк Николай Григорьевич
Шрифт:
Что это за понятие – электроотрицательность? Электронные пары, обобществляемые двумя различными атомами, не обязательно распределяются между ними поровну, что и было уже показано на молекуле воды. Если один из атомов сильнее притягивает обобществляемые электроны, чем другой, между ними возникает полярная ковалентная связь. Способность атома притягивать к себе электроны, обобществляемые при образовании химической связи, называется его электроотрицательностью.
Водородные связи почти в 20 раз слабее ковалентных, но во много раз сильнее ван-дер-ваальсовых. Впрочем, об этих связях можно говорить и как в меру сильных, и как в меру слабых. Например, на одних только водородных связях построена кристаллическая решетка льда. Все мы знаем, насколько прочен лед. Но стоит немного нагреть лед, как он начнет таять, так как при этом начнут разрушаться водородные связи. Образование льда – это самое наглядное проявление водородных связей. Но эти связи играют чрезвычайно важную роль и в существовании всего живого, они имеются в крови, в белках, в нуклеиновых кислотах и во многих других биополимерах. Например, упорядоченность строения белков не может быть достигнута без участия водородных связей. Белки бывают скручены в спирали, и такую спиралевидную форму обеспечивают водородные связи. В результате нагревания белков (при варке) водородные связи разрываются, и скрученная цепь необратимо теряет свою форму. Водородные связи оказывают влияние и на вязкость крови. При кислой крови величина водородных связей между молекулами воды уменьшается, и кровь (а это в основе своей – вода) становится менее вязкой и, следовательно, более текучей, она легче проникает в микрокапилляры. Такая кровь лучше снабжает клетки нашего организма кислородом. И в быту мы имеем дело с водородными связями; например, при каждой стирке мы пытаемся уменьшить их с помощью поверхностноактивных веществ.
Но самое главное в действиях водородных связей заключается в том, что только благодаря им вода может находиться в жидком состоянии, а следовательно, что возможна сама жизнь. Не вдаваясь в подробности, кратко скажу, что вода имеет столь высокую температуру кипения (100 °C) только потому, что водородные связи удерживают ее молекулы в компактном состоянии (в жидком состоянии). И если бы не было этих связей, любая молекула воды, имея лишь незначительную тепловую энергию, могла бы испариться, и мы имели бы это вещество только в газообразном состоянии.
Но все это пока что всего лишь интересная информация о водородных связях. А теперь мы рассмотрим те явления, связанные с водородными связями, которые непосредственно оказывают влияние на наше здоровье и которыми мы можем хотя бы в некоторой мере управлять.
Поверхностное натяжение воды
Водородные связи определяют и величину поверхностного натяжения воды, а поэтому по величине этого натяжения мы можем судить, хотя и косвенно, и о величине водородных связей в той же воде. Измеряется же поверхностное натяжение легко и просто. Поэтому в дальнейшем, когда речь будет идти о величине поверхностного натяжения, мы можем считать, что речь идет и о величине водородных связей. А, уменьшая величину водородных связей, мы будем уменьшать величину вязкости то ли воды, то ли крови. Последнее нас больше всего и интересует. Изменять величину водородных связей можно разными способами. Одним из таких способов является температурный режим жидкости. Чем выше температура воды, тем меньше величина водородных связей в воде, и тем меньше поверхностное натяжение воды, и тем меньше вязкость воды.
В таблице 4 показано, как зависит поверхностное натяжение и вязкость воды от ее температуры. При повышении температуры воды увеличивается число разорванных водородных связей (в связи с увеличением тепловой энергии молекул воды), а поэтому уменьшаются и поверхностное натяжение воды, и ее вязкость. Но так как повысить температуру тела (и температуру крови) выше 37 °C мы не можем, то ясно, что с помощью температурного фактора мы никак не сможем воздействовать на вязкость крови. Поэтому люди и вынуждены разжижать кровь при помощи всевозможных кислот.
Из таблицы 4 видно, что поверхностное натяжение воды величиной в 69 единиц мы можем получить с помощью нагрева ее до 45 °C, имея при этом определенную величину вязкости. Но точно такой же показатель по вязкости мы можем получить и без нагрева воды, понижая ее поверхностное натяжение до 69 единиц каким-либо иным способом. Например, добавлением в воду этилового спирта. Водка (40 % этилового спирта и 60 % воды) имеет поверхностное натяжение в 30 единиц. Кстати, именно по этой причине она легко и быстро проникает в кровь. Но если нам нужна не водка, а питьевая вода с пониженным поверхностным натяжением, то мы можем добавить в воду лишь незначительное количество этилового спирта (до 2 % – такое количество этого спирта содержит кумыс, речь о котором будет идти в 7-й главе) и получим воду с поверхностным натяжением около 69 единиц. То есть без нагрева воды до 45 °C мы получаем такую же вязкость, как и при этой температуре.
Точно так же мы можем подкислить воду одной из органических кислот и тоже получим и пониженное поверхностное натяжение, и пониженную вязкость такой воды. Как видим, добавлением в воду спирта или органической кислоты мы уменьшаем число водородных связей между молекулами воды, вследствие чего понижается ее вязкость. А если перевести все это на кровь, то точно таким же способом можно понизить и вязкость крови. Именно вязкость крови нас прежде всего и должна интересовать при рассмотрении водородных связей.
Каким же образом этиловый спирт и органические кислоты могут понижать вязкость воды или крови?
Одной из причин разрыва водородных связей является внедрение крупных молекул спирта или кислоты между молекулами воды. Но у кислот имеется еще и другое специфическое свойство – они увеличивают концентрацию ионов водорода в воде, которые и прерывают многие водородные связи между молекулами воды.
Как это происходит?
Ионы водорода, находящиеся в воде, называют гидратированными ионами, так как вода очень энергично взаимодействует с такими ионами. По сути, мы не найдем в воде одиночных ионов водорода. Чаще всего ион водорода связывается с одной молекулой воды, образуя положительно заряженный ион гидроксония (Н3О+).
Так мы выяснили, каким образом уменьшается вязкость подкисленной крови.
В связи с этим можно воспользоваться и таким советом Джарвиса.
«Народная медицина рекомендует увеличить ежедневное потребление кислоты в органической форме, например, в виде яблок, винограда, клюквы или их соков. Ежедневно необходимо съедать количество фруктов, эквивалентное четырем стаканам сока. Их можно съедать за едой или в любое удобное для вас время». (В скобках приведу такой наглядный пример. Обычно праздничное застолье начинается с шампанского. Шампанское содержит и этиловый спирт, и углекислоту, в результате чего практически мгновенно проникает в кровь и вызывает быстрое опьянение.)