Вход/Регистрация
? – Число Бога. Золотое сечение – формула мироздания
вернуться

Ливио Марио

Шрифт:

Я знаком с Пенроузом и Стейнхардтом уже много лет, поскольку занимаюсь тем же делом – космологией и теоретической астрофизикой. Более того, в 1984 году Пенроуз получил приглашение выступить на первой крупной конференции по релятивистской астрофизике, которую я организовывал, а Стейнхардт – на последней, в 2001 году. И тем не менее, я не знал, что подтолкнуло их к тому, чтобы углубиться в дебри занимательной математики: казалось бы, эта область довольно далека от их профессиональных интересов в астрофизике. Поэтому я спросил у них об этом.

Роджер Пенроуз ответил:

– Не уверен, что дам на этот вопрос сколько-нибудь глубокий ответ. Как вам известно, математика – занятие, которому большинство математиков предается ради удовольствия. – И, немного поразмыслив, добавил: – Я с детства любил подгонять геометрические фигуры друг к другу, так что исследования мозаик опередили исследования по космологии. Однако в какой-то момент изыскания в области занимательной математики были, по крайней мере, отчасти, связаны с космологическими исследованиями. Я размышлял о крупномасштабной структуре Вселенной и искал игрушечные модели, построенные по простым правилам, которые, тем не менее в крупном масштабе были бы способны породить сложные структуры.

– Но что же заставило вас так долго работать над этой задачей? – спросил я тогда.

– Как вы знаете, меня всегда интересовала геометрия, – со смехом ответил Пенроуз, – так что мне было просто интересно разобраться в этой задаче. Более того, хотя у меня было подозрение, что подобные структуры могут встречаться в природе, я не понимал, как природа могла бы создать их посредством нормального процесса кристаллического роста, локального процесса. В некотором смысле я до сих пор этого не понимаю.

А Пол Стейнхардт на мой вопрос по телефону тут же воскликнул:

– Хороший вопрос!

А затем, подумав несколько минут, рассказал:

– Когда я был студентом-старшекурсником, то не вполне представлял себе, чем хочу заниматься. Затем, уже в аспирантуре, я день и ночь ломал себе голову над физикой частиц, и мне нужно было найти какую-то отдушину – вот и я стал для развлечения исследовать тему порядка и симметрии твердых тел. А стоило мне натолкнуться на проблему квазипериодических кристаллов, как я понял, что это непреодолимое искушение, и с тех пор то и дело возвращался к ней.

Фракталы

Модель квазикристаллов Стейнхардта-Джуна обладает одним интересным свойством: она создает дальний порядок из взаимодействий соседних элементов, однако полностью периодический кристалл при этом не получается. Невероятно, но факт: в общем и целом это же свойство мы обнаруживаем у чисел Фибоначчи. Рассмотрим простой алгоритм, позволяющий создать последовательность, получившую название золотой последовательности. Начнем с числа 1, затем заменим 1 на 10. Теперь будем заменять все 1 на 10, а все 0 на 1. Тогда у нас получатся следующие этапы:

1

10

101

10110

10110101

1011010110110

101101011011010110101

И так далее. Очевидно, что мы начали с «ближнего» правила (простое превращение 0 в 1 и 1 в 10), а получили непериодический «дальний порядок». Обратите внимание, что количество цифр 1 в каждой строчке составляет 1, 1, 2, 3, 5, 8. ., то есть числа Фибоначчи, как и количество цифр 0, начиная со второй строчки. Более того, отношение числа единиц к числу 0 по мере удлинения последовательности становится все ближе к . Далее, изучение рис. 27 показывает, что если обозначить новорожденную пару крольчат 0, а взрослую пару 1, то количество пар кроликов будет в точности повторять только что приведенную последовательность. Однако неожиданные свойства золотой последовательности этим не исчерпываются. Если начать с 1 (в первой строчке), за которым следует 10 (вторая строчка) и попросту приписывать к каждой строчке непосредственно предшествующую, тоже получится цельная последовательность. То есть четвертая строчка 10110 получается, если приписать вторую – 10 – к третьей – 101, и т. д.

Вспомним, что самоподобие означает симметрию при любом масштабе. Логарифмическая спираль обладает самоподобием, поскольку, как ее ни увеличивай, выглядит всегда одинаково, как и череда вписанных друг в друга правильных пятиугольников и пентаграмм на рис. 10. Каждый раз, когда вы приходите в парикмахерскую, вы видите бесконечную череду собственных самоподобных отражений в двух параллельных зеркалах.

Так вот, золотая последовательность тоже самоподобна при любом масштабе. Возьмем последовательность

1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1…

И посмотрим на нее в лупу – конечно, не в буквальном смысле слова. Начнем слева и каждый раз, когда нам встретится 1, будем помечать группу из трех символов, а когда нам встретится 0 – группу из двух символов, только так, чтобы группы не перекрывались. Например, первая цифра у нас 1, поэтому мы отметим группу из первых трех символов – 101 (см. ниже). Вторая цифра в ряду у нас 0, поэтому мы отметим группу из двух символов 10, следующую за первой группой 101. Третья цифра – 1, значит, отмечаем три цифры 101, которые следуют за 10, и т. д. Теперь размеченная последовательность выглядит так:

  • Читать дальше
  • 1
  • ...
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: