Вход/Регистрация
? – Число Бога. Золотое сечение – формула мироздания
вернуться

Ливио Марио

Шрифт:

или

s1 – d2 = s2.

Поскольку на основании нашего предположения общая мера для s1 и d1 представляет собой также общую меру для d2, последнее равенство доказывает, что она же еще и общая мера для s2. Поэтому мы обнаруживаем, что та единица, которая измеряет s1 и d1, измеряет также s2 and d2. Продолжать этот процесс можно до бесконечности, рассматривая правильные пятиугольники все меньшего и меньшего размера. Тогда мы получим, что та же единица, которая служит общей мерой стороны и диагонали первого правильного пятиугольника, служит общей мерой и для всех других пятиугольников, сколь бы крошечными они ни становились. Поскольку очевидно, что так быть не может, следовательно, наше первоначальное предположение, что у стороны и диагонали правильного пятиугольника есть общая мера, ложно, что и доказывает, что s1 и d1 несоизмеримы.

Приложение 3

Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. У треугольника TBC основание BC равно 2а, а высота ТА равна с. Следовательно, площадь треугольника равна с x а. Мы хотим показать, что если квадрат высоты пирамиды h2 равен площади ее треугольной стороны s x a, то s/a равно золотому сечению.

Дано, что

h2 = sx a.

Применив теорему Пифагора к прямоугольному треугольнику TOA, получаем

s2 = h2 + a2.

Теперь подставим значение h2 из первого равенства и получим

s2 = sx a + a2.

Разделим обе части на a2 и получим

(s/a)2 = (s/a)+ 1.

Иными словами, если мы обозначим s/a как x, у нас получится квадратное уравнение

x2 = x+ 1.

В главе 4 показано, что именно это уравнение и описывает золотое сечение. 

Приложение 4 

Одна из теорем в «Началах» доказывает, что если у двух треугольников одинаковые углы, эти треугольники подобны. А это значит, что форма у этих треугольников совершенно одинаковая и длины сторон соответственно пропорциональны. Если одна сторона одного треугольника вдвое длиннее соответствующей стороны второго треугольника, то это справедливо и по отношению к остальным сторонам.

Треугольники ADB и DBC подобны, поскольку у них одинаковые углы. Следовательно, отношение AB/DB, то есть отношение сторон треугольников ADB и DBC, равно DB/BC, то есть отношению оснований этих треугольников.

AB/DB= DB/BC.

Однако эти треугольники также равнобедренные, поэтому

DB= DC= AC.

Из вышеприведенных равенств следует, что

AC/BC= AB/AC,

Что означает (согласно определению Евклида), что точка C делит отрезок AB в золотом сечении. Поскольку AD = AB и DB = AC, получаем также, что AD/DB = .

Приложение 5

Квадратные уравнения – это уравнения, имеющие вид

ax2 + bx+ c= 0,

где a, b, c – произвольные числа. Например, в уравнении 2x2 + 3x+ 1 = 0 имеем a = 2, b = 3, c = 1.

Общая формула для поиска двух корней уравнения:

  • Читать дальше
  • 1
  • ...
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: