Шрифт:
Рс = Рси = Рп (49)
ибо величина Рп является общей для системы и среды (рис. 2, а и б). С помощью соотношений (48) и (49) выражение (47) преобразуется к виду
dE + dEc = 0 (50)
Это и есть искомое уравнение. Аналогичное равенство можно составить для любой сопряженной степени свободы системы и окружающей среды. Следовательно, уравнение (50) в общем случае справедливо для произвольного числа n [ТРП, стр.107-108].
2. Второе начало ОТ, или закон сохранения количества вещества.
Дифференциальное уравнение (50) напоминает соответствующее уравнение для закона сохранения энергии (46); оно говорит о том, что в процессе взаимодействия системы и окружающей среды количество вещества, вышедшего (или вошедшего) из окружающей среды через контрольную поверхность, равно количеству вещества, вошедшего (или вышедшего) в систему через ту же поверхность. Это значит, что общее количество вещества в системе и окружающей среде остается неизменным: на сколько уменьшается количество вещества в окружающей среде, на столько же увеличивается это количество в системе и наоборот.
Следовательно, равенство (50) выражает закон сохранения количества вещества, или, короче, закон вещества. Этот закон является вторым законом природы, относящимся к начальному шагу эволюции явлений, поэтому его можно назвать вторым началом ОТ.
Второе начало выражает идею сохранения количества вещества. Оно справедливо для любого вещества, включая все известные, перечисленные в параграфе 2 гл. VI, в том числе термическое (вермическое), и все неизвестные, которые, возможно, еще будут открыты, для любой по сложности системы и для любого уровня мироздания, поэтому представляет собой предельно универсальный, абсолютный закон природы. В самом общем виде второе начало может быть сформулировано следующим образом: количество вещества Вселенной постоянно. Увеличение этого количества в одном месте Вселенной всегда неизбежно сопровождается его уменьшением в другом и наоборот.
Второе начало ОТ в совокупности с первым определяет все то, что сохраняется в этом мире. Оказывается, что в общем случае сохранению подлежат только количества - вещества и его поведения (количества материи и движения). Все остальное способно и вынуждено при определенных для каждого конкретного случая условиях претерпевать соответствующие изменения. Этим самым уточняется и конкретизируется древняя идея сохранения, принадлежащая еще Эмпедоклу: свойством не происходить из ничего и не быть уничтоженными обладают лишь две категории: количество вещества и количество поведения последнего. Все остальное преходяще.
Второе начало является новым законом, впервые сформулированным в рамках ОТ; об этом говорится, например, в работах [17, с.11 и др.; 18, с.66, 246; 20, с.236; 21, с.48]. Ранее были известны лишь две частные формы этого начала. Речь идет о законах сохранения массы и электрического заряда. Первый из них применительно к химическим явлениям был экспериментально установлен М.В. Ломоносовым в 1756 г. и французским ученым Лавузье в 1770 г. и поэтому иногда именуется законом Ломоносова-Лавуазье. Масса и электрический заряд служат мерами количеств соответствующих веществ - кинетического и электрического; согласно второму началу ОТ, они подлежат обязательному сохранению при любых процессах взаимодействия системы и окружающей среды. Обязаны сохраняться также объем ? , являющийся мерой количества метрической (пространство) формы вещества (см. параграф 2 гл. XV), количество термического (вермического) вещества и количества всех остальных веществ [ТРП, стр.109-110].
3. Особенности применения второго начала ОТ.
Использование второго начала ОТ для изучения и расчета реальных объектов требует известной осмотрительности, ибо на практике часто приходится иметь дело с совокупностью контактирующих между собой разнородных тел, а также с эффектом экранирования, обсуждаемым в гл. XIII. В первом случае на контрольной поверхности наблюдается либо излом кривой распределения интенсиала (рис. 2, б), либо даже скачки последнего (рис. 2, в и г) - все зависит от конкретных свойств контактирующих тел. В этих условиях, чтобы применение закона вещества не вызывало затруднений, скачок интенсиала и все, что происходит в этом скачке, надо рассматривать как окружающую среду по отношению к системе. При этом интенсиалом, через который определяется работа, служит величина Рп , находящаяся на контрольной поверхности со стороны системы (рис. 2, виг).
Эффект экранирования связан с кажущимся появлением или исчезновением вещества, в частности электрического, теплового (вермического) и т.д. Это появление или исчезновение учитывается с помощью дополнительного слагаемого dEэ , вводимого в уравнение (50) второго начала ОТ. Имеем
dE + dEc ? dEэ = 0 (51)
Знак плюс перед последним слагаемым говорит о появлении в системе некоторого, дополнительного количества вещества, знак минус - об исчезновении этого количества.
Здесь очень важно еще раз подчеркнуть, что появление и исчезновение вещества в системе являются кажущимися; они связаны с экранированием одних веществ другими. В результате экранирования данное вещество начинает или пере тает участвовать в силовом поведении, а это участие обычно служит для нас тем признаком, по которому мы только и можем судить о наличии в системе того или иного вещества. Поэтому эффект экранирования ни в коем случае нельзя рассматривать как нарушение второго начала ОТ. Просто в процессе экранирования начинают или перестают проявляться силовые свойства определенного вещества, что отражается на величине совершаемой работы, которая входит в уравнение первого начала [ТРП, стр.110-111].
Глава IХ. Третье начало ОТ.
1. Вывод уравнения.
Следующей важнейшей характеристикой, входящей в основное уравнение ОТ для ансамбля простых явлений, служит интенсиал Р , который является мерой качества поведения вещества. Анализ этой меры позволяет установить третье интереснейшее свойство природы.
Согласно второй строчке общего уравнения (15), интенсиал, играющий роль меры N5 , есть однозначная функция экстенсора N , (см. формулу (27)). Следовательно, для системы с n степенями свободы можно написать