Шрифт:
Фотография Кёнигсбергского университета, известного в народе как Альбертина. Около 1900 года.
* * *
ДИАЛОГ ИЗ ФИЛЬМА «УБИЙСТВА В ОКСФОРДЕ»
(РЕЖИССЕР АЛЕКС ДЕ ЛА ИГЛЕСИА, АВТОР СЦЕНАРИЯ ХОРХЕ ГЕРРИКАЭЧЕВАРРИЯ, 2008)
Шелдон: О, я забыл, что говорю с защитником универсальной логики. Вы и полиция верите, что истину можно доказать. Исходя из неких аксиом с помощью корректных рассуждений можно прийти к верному выводу, не так ли?
Мартин: Это верно, как верно и то, что сегодня среда.
Шелдон: А что если я скажу «Все британцы лжецы»? Эта фраза будет истинной, ложной или ее нельзя будет доказать?
Мартин: Разумеется, существуют математические высказывания, которые нельзя доказать или опровергнуть исходя из аксиом. Это неразрешимые высказывания.
Шелдон: Именно. Теорема Гёделя о неполноте. Даже в мире чистой математики не все можно доказать.
Мартин: Да, я это знаю, но в нашем случае это не так.
Шелдон: Известно ли вам, что истинное и доказуемое разделяет пропасть, бездна? Мы никогда не узнаем, известны ли нам все данные о каком-либо явлении, при этом любая новая информация может изменить все.
* * *
И все же комментарий скромного юноши в круглых очках мог изменить направление дальнейшего развития всей логики, и это не ускользнуло от внимания некоторых присутствующих. Среди них был Джон фон Нейман, который, благодаря своей легендарной быстроте ума мгновенно понял, что имел в виду Гедель, и попросил его по окончании конференции изложить свои соображения подробнее. Фон Нейман учился с Гильбертом в Гёттингене и даже опубликовал несколько статей под его руководством, однако вскоре он начал сомневаться, что с помощью финитных методов, предложенных формалистами, можно доказать непротиворечивость математики. В юности фон Нейман добился некоторых успехов в разрешении этой проблемы и продолжал работать над ней. Как-то ночью ему приснилось решение, но, попытавшись его записать, математик увидел ошибку в рассуждениях и в итоге решил заняться другими вопросами.
Помимо открытий в области логики, Джон фон Нейман совершил важный вклад в квантовую механику.
Прибыв в Кёнигсберг в качестве приглашенной звезды, Джон фон Нейман вскоре понял, что его затмил актер второго плана, рассказавший о том, что именно могло присниться фон Нейману. Вернувшись домой, давний коллега Гильберта обнаружил, что если рассуждения австрийского математика верны, то непротиворечивость арифметики нельзя доказать в рамках самой арифметики. Фон Нейман сообщил об этом Гёделю 20 ноября 1930 года, всего через три дня после того, как Гёдель отправил в журнал Monatshefte fur Mathematik und Physik рукопись статьи «О формально неразрешимых предложениях Principia Mathematica и родственных систем I» с аналогичным выводом. Фон Нейман проникся уважением к своему коллеге, и когда весной 1931 года статья была опубликована, он прервал курс лекций в Берлине, чтобы объяснить важность открытия Гёделя, а 20 лет спустя вспоминал этот момент как «веху, видимую издалека, во времени и пространстве».
В дни проведения Кёнигсберской конференции в этом же городе находился и Давид Гильберт — он был приглашен на встречу общества немецких ученых, чтобы выступить с речью на тему «Логика и понимание природы». Эта речь прозвучала на следующий день после того, как Гёдель сделал свое заявление, и весьма вероятно, что он также находился среди ее слушателей. В своем выступлении Гильберт горячо провозгласил, что в математике не существует неразрешимых задач: «Не надо верить тем, кто сегодня с философической миной и тоном превосходства пророчит закат культуры, и впадать в ignorabimus [3] . Нет для нас, математиков, никакого ignorabimus, и, по моему убеждению, нет его и для естественных наук вообще.
3
Сокращение латинского изречения ignoramus et ignorabimus, то есть «не знаем и не узнаем». Это изречение было взято из доклада немецкого физиолога Эмиля Дюбуа-Реймона «О пределах познания природы» (1872), в котором он выразил пессимизм по поводу ограниченности научного знания.
Вместо дурацкого ignorabimus провозгласим наш контрлозунг: мы должны знать — мы будем знать!» Эхо выступления Гильберта еще не стихло, когда он узнал, что его программа находится под угрозой.
До заявления Геделя программа Гильберта давала все основания рассчитывать на успех: ее первый этап, формализация математики, по всей видимости, был завершен Расселом и Уайтхедом в книге «Начала математики», а различные логики пытались доказать непротиворечивость классических формальных систем начиная с арифметики. Хотя еще во введении к своей докторской диссертации Гёдель предположил невозможность существования «истинных высказываний, которые нельзя вывести в рассматриваемой системе», он стремился не положить конец мечтам Гильберта, а доказать правильность его программы. Однако последние открытия того времени говорили об обратном: исследования Гаусса в области геометрии отрицали возможность создания идеально точной карты Земли; Эварист Галуа (1811–1832) доказал, что почти никакое алгебраическое уравнение нельзя решить простыми методами, а Вернер Гейзенберг (1901–1976) поставил новые задачи перед наукой, введя принцип неопределенности, согласно которому нельзя одновременно с точностью определить положение электронов и их скорость.
Теоремы Гёделя сделали очевидными все ограничения, присущие аксиоматическому методу: если в первой главе мы объясняли, что обязательными свойствами любой формальной системы являются непротиворечивость (полное отсутствие противоречий), рекурсивная перечислимость (возможность отделить аксиомы от прочих высказываний) и полнота (истинное и доказуемое полностью совпадают), то Гёдель показал, что арифметика не может обладать всеми тремя этими свойствами одновременно. Согласно его трудам, никакая рекурсивно перечислимая и непротиворечивая система аксиом арифметики не может быть полной, то есть всегда будут существовать какие-либо истинные свойства чисел, которые нельзя будет доказать исходя из аксиом арифметики. В этом и заключается суть теоремы Гёделя о неполноте, которую специалисты называют первой теоремой Геделя, так как, помимо нее, он доказал и вторую теорему, в которой утверждается, что высказывание «арифметика является непротиворечивой» являет собой пример неразрешимого высказывания. К таким же выводам по результатам конференции в Кёнигсберге пришел и фон Нейман.
Для доказательства первой теоремы о неполноте Гедель видоизменил парадокс лжеца, превратив его в неразрешимое высказывание, которое тем не менее не содержало противоречий. Очарование этой теоремы отчасти заключается в том, что она находится всего в одном шаге от парадоксов, но никогда не делает этот шаг. Мы уже рассказывали в главе 2 об антиномии Эпименида, которая в одной из формулировок звучит как «эта фраза ложна». И действительно, если это высказывание истинно, то оно само утверждает свою ложность, а если считать его ложным, то оно должно быть истинным. Что произойдет, если вместо истинных утверждений мы будем рассматривать доказуемые? Обозначим буквой G (по первой букве фамилии Геделя) высказывание «это высказывание недоказуемо» и будем предполагать, что используемая нами система аксиом является непротиворечивой. Если G ложно, то, так как G гласит «я недоказуемо», то G является доказуемым, однако в непротиворечивой системе никакое ложное высказывание не может быть доказуемым, так как это немедленно приведет к противоречию. Если С не является ложным, оно истинное, следовательно, имеем истинное высказывание, гласящее «я недоказуемо». Таким образом, мы предположили, что исходная система непротиворечива, однако обнаружили истинное, но недоказуемое высказывание. Иными словами, непротиворечивость подразумевает неполноту.
Мы предположили, что исходная система непротиворечива… Но какая система?
Внимательный читатель, задавшись этим вопросом и прочитав предыдущий абзац, возможно, подумал, что автор запутался и не совсем четко представляет, о какой системе идет речь. С удовольствием сообщаем, что читатель самостоятельно пришел к важнейшему вопросу, на который до Гёделя никто не мог дать ответ. Наши рассуждения показывают, что утверждение «я недоказуемо» должно быть истинным, однако здесь речь идет не о математическом высказывании, как нам бы того ни хотелось, но о метаматематическом, так как в нем говорится не об объектах изучения какой-либо теории, а о самой теории. Гениальность Геделя заключалась в том, что он перевел некоторые высказывания с метаязыка на язык арифметики благодаря системе кодов, в основе которой лежали простые числа. После этой «гёделизации» метаматематики натуральные числа стали вести двойную жизнь: с одной стороны, они остались неизменными, с другой — стали играть роль формул, что позволило выразить высказывание вида «я недоказуемо», которое априори имело смысл в метаязыке, в виде отношения между числами.