Шрифт:
Оригинальность мышления и внимание к мелочам характерны для трудов многих греческих математиков. И, тем не менее, методы рассуждений и поиска решения, которые разработал Архимед, выделяют его из рядов всех ученых того времени. Приведу лишь три показательных примера, дающие возможность оценить масштабы изобретательности Архимеда. Один на первый взгляд кажется всего лишь забавным курьезом, однако при более пристальном рассмотрении показывает всю глубину пытливого ума Архимеда. Остальные два примера показывают, насколько методы Архимеда опережали время – вот почему я считаю, что именно они возвышают Архимеда до положения «волшебника».
Судя по всему, Архимед очень увлекался большими числами. Однако очень большие числа неудобно записывать обычным способом, они слишком громоздкие (попробуйте хотя бы выписать чек на 8,4 триллиона долларов, национальный долг США на июнь 2006 года, и втиснуть это число в строчку, выделенную под сумму). Поэтому Архимед разработал систему, позволявшую записывать числа длиной до 80 000 триллионов знаков. Затем он применил эту систему в оригинальном трактате под названием «Псаммит» («Исчисление песчинок»), где доказал, что общее количество песчинок в мире не бесконечно.
Даже введение в трактат столь гениально, что я приведу здесь отрывок из него (все сочинение посвящено Гелону, сыну царя Гиерона II) (Heath 1897).
Государь Гелон!
Есть люди, думающие, что число песчинок бесконечно. Я не говорю о песке в окрестности Сиракуз и других местах Сицилии, но о всем его количестве как в странах населенных, так и необитаемых.
Другие думают, что хотя число это и не бесконечно, но большего представить себе невозможно.
Если бы эти последние вообразили массу песку в объеме земного шара, причем им были бы наполнены все моря и пропасти до вершин высочайших гор, то, конечно, они еще меньше могли бы поверить, что легко назвать число, его превосходящее.
Я, напротив, постараюсь доказать с геометрической точностью, которая убедит тебя, что между числами, упоминаемыми мной в книге, написанной Зевксиппу [к сожалению, она утрачена], есть числа, превышающие число песчинок, которые можно вместить не только в пространстве, равном объему Земли, наполненной указанным выше способом, но и целого мира.
Ты знаешь, что, по представлению некоторых астрономов, мир имеет вид шара, центр которого совпадает с центром Земли, а радиус равен длине прямой, соединяющей центры Земли и Солнца.
Но Аристарх Самосский в своих «Предложениях», написанных им против астрономов, отвергая это представление, приходит к заключению, что мир гораздо больших размеров, чем только что указано.
Он полагает, что неподвижные звезды и солнце не меняют своего места в пространстве, что Земля движется по окружности около Солнца, находящегося в ее центре, и что центр шара неподвижных звезд совпадает с центром Солнца, а размер этого шара таков, что окружность, описываемая, по его предположению, Землей, находится к расстоянию неподвижных звезд в таком же отношении, в каком центр шара находится к его поверхности (здесь и далее пер. Г. Попова).
Из этого введения тут же следует два вывода: (1) Архимед был готов оспорить даже самые популярные представления (вроде бесконечности числа песчинок) и (2) он с уважением относился к гелиоцентрической модели астронома Аристарха (правда, далее в трактате он уточнил одну из гипотез Аристарха). Во Вселенной Аристарха Земля и планеты вращались вокруг неподвижного Солнца, находящегося в ее центре (вспомним, что эту модель предложили за 1800 лет до Коперника!). После этих предварительных замечаний Архимед вплотную приступает к решению задачи о песчинках и делает для этого несколько последовательных логических шагов. Сначала он оценивает, сколько песчинок нужно положить в ряд, чтобы получился диаметр макового зернышка. Затем подсчитывает, сколько нужно маковых зернышек, чтобы выложить отрезок, равный толщине пальца, сколько пальцев составляют стадий (около 178 метров), а затем подсчитывает количество песчинок на десять миллиардов стадиев. По ходу дела Архимед изобретает систему обозначений и индексов, которые в сочетании позволяют ему классифицировать эти исполинские числа. Поскольку Архимед предположил, что сфера неподвижных звезд менее чем в десять миллионов раз больше сферы, в которую вписана орбита Солнца (как она видится с Земли), то обнаружил, что количество песчинок во Вселенной, набитой песком, меньше 1063 (единицы с 63 нулями). В заключение трактата он почтительно обращается к Гелону.
Государь! Сказанное мною покажется, конечно, невероятным многим из тех, кто не изучал математики, но будет достоверно, потому что доказано, для тех, кто ею занимался, если внимательно рассмотреть все сказанное мною о расстояниях и величине Земли, Солнца, Луны и всей Вселенной. Впрочем, я со своей стороны нахожу, что было бы полезно, если бы и другие расследовали этот предмет еще обстоятельнее.
Красота «Исчисления песчинок» заключается в той легкости, с какой Архимед переходит от повседневных предметов (маковых зернышек, песчинок, пальцев) к абстрактным числам и системе математических обозначений – а затем обратно к размерам Солнечной системы и Вселенной в целом. Очевидно, что Архимед обладал столь гибким умом, что безо всяких затруднений применял свою математику для открытия неизвестных свойств Вселенной, а свойства космоса – для развития арифметических концепций.
Вторая причина, по которой Архимед достоин звания волшебника, – метод, при помощи которого он формулировал и доказывал свои выдающиеся геометрические теоремы. До ХХ столетия об этом методе не было известно почти ничего, как и о мыслительном процессе Архимеда в целом. Свои соображения он излагает так сжато, что не оставляет практически никаких зацепок. А затем, в 1906 году, было сделано эпохальное открытие, позволившее разобраться, как был устроен разум этого гения. История открытия так похожа на исторические детективы итальянского писателя Умберто Эко, что я просто обязан вкратце изложить этот сюжет. [28]
28
Чудесное описание истории проекта «Палимпсест» дано в Netz and Noel 2007.
Палимпсест Архимеда
В какой-то момент в Х веке (вероятно, в 975 году) некий безымянный писец переписал в Константинополе (ныне Стамбул) три важнейшие работы Архимеда – «Метод механических теорем», «Стомахион» и «О плавающих телах». Вероятно, это был результат общего интереса к греческой математике, который вспыхнул во многом благодаря византийскому ученому Льву Математику, жившему в IX веке. Однако в 1204 году участники Четвертого крестового похода соблазнились обещаниями награды и разграбили Константинополь. В последующие годы страсть к математике угасла, а раскол между западной католической церковью и восточной православной стал окончательным и бесповоротным. В какой-то момент до 1229 года манускрипт с работами Архимеда подвергся катастрофической переработке: рукопись разделили на отдельные листы пергамента и смыли все написанное, чтобы использовать его для христианской литургической книги. Писец по имени Иоанн Мирон завершил работу над литургической книгой 14 апреля 1229 года (Netz and Noel 2007). К счастью, в результате отмывания оригинальный текст не исчез бесследно. На рис. 12 приведена страница из манускрипта: горизонтальные линии – это текст молитв, а еле заметные вертикальные – математические трактаты Архимеда. К XVII веку палимпсест – переписанный документ – попал каким-то образом в Святую Землю, в монастырь Св. Саввы близ Вифлеема. В начале XIX века в библиотеке монастыря хранилось не меньше тысячи манускриптов. И все же по не вполне понятным причинам палимпсест Архимеда вернули в Константинополь. Затем, в 1840-е годы, подворье Иерусалимского храма Гроба Господня в Константинополе посетил знаменитый немецкий библеист Константин Тишендорф (1815–1874), первооткрыватель одного из самых ранних списков Библии, – и увидел там этот палимпсест. Судя по всему, Тишендофу показалось, что еле заметный математический текст представляет определенный интерес, поскольку он оторвал и выкрал один лист манускрипта. В 1879 году наследники Тишендорфа продали эту страницу библиотеке Кембриджского университета.
В 1899 году греческий ученый А. Пападопулос-Керамеус составил каталог всех манускриптов, хранившихся в подворье, и рукопись Архимеда значится в его каталоге как Ms. 355. Пападопулос-Керамеус сумел прочитать несколько строчек математического текста и привел их в каталоге, понимая, вероятно, что это может быть очень важное открытие. Это был поворотный момент в саге о манускрипте. Математический текст в каталоге привлек внимание датского филолога Йохана Людвига Гейберга (1854–1928). Гейберг понял, что текст принадлежит Архимеду, и в 1906 году приехал в Стамбул, изучил и сфотографировал палимпсест, а год спустя объявил о сенсационном открытии: в рукописи содержались два неизвестных ранее трактата Архимеда и один дошедший до нас лишь в латинском переводе. Но хотя Гейберг сумел прочитать и впоследствии опубликовал отрывки из манускрипта в своей книге о трудах Архимеда, остались большие пробелы. К несчастью, в какой-то момент после 1908 года манускрипт исчез из Стамбула при загадочных обстоятельствах – а когда всплыл снова, оказалось, что им владеет некое парижское семейство, которое утверждает, что приобрело его еще в 20-е годы. Палимпсест хранили в неподходящих условиях, и он был местами непоправимо поврежден плесенью, а три страницы, которые ранее перевел Гейберг, и вовсе пропали. Мало того, после 1929 года кто-то нарисовал на четырех страницах четыре миниатюры в византийском стиле. Впоследствии это французское семейство продало манускрипт владельцам аукциона «Кристи». Вопрос о праве собственности на манускрипт разбирался в 1998 году в нью-йоркском суде. Греческий православный патриархат Иерусалима заявил, что рукопись в 20-е годы похитили из одного из его монастырей, однако судья вынесла решение в пользу аукциона «Кристи». Вскоре после этого, 29 октября 1998 года, манускрипт был продан на аукционе «Кристи»; покупатель, пожелавший остаться неизвестным, заплатил за него 2 миллиона долларов. Новый владелец поместил манускрипт в Художественный музей Уолтерса в Балтиморе, где рукопись подвергли интенсивной консервации и тщательному исследованию. В арсенале современных ученых появились инструменты по распознаванию изображений, недоступные исследователям прошлого.