Шрифт:
• Один триггер может сосчитать последовательность из двух чисел, 0 и 1.
• Максимальное число двоичных состояний счетчика может зависеть от количества триггеров, содержащихся в счетчике.
• Счетчики могут быть либо синхронными, либо асинхронными.
• Асинхронные счетчики называют счетчиками пульсаций.
• Синхронные счетчики тактируют все каскады одновременно.
• Сдвиговые регистры используются для временного хранения данных.
• Сдвиговые регистры состоят из соединенных вместе триггеров.
• Сдвиговые регистры могут перемещать данные влево или вправо.
• Сдвиговые регистры используются для преобразования данных из последовательной формы представления в параллельную, и наоборот.
• Сдвиговые регистры могут выполнять умножение и деление.
Глава 34. САМОПРОВЕРКА
1. Опишите, как RS-триггер изменяет состояния с высокого на выходе Q на высокое на выходе Q– .
2. В чем главное отличие D-триггера от тактируемого RS-триггера?
3. Из каких компонентов состоит счетчик, и как он сконструирован?
4. Нарисуйте схему счетчика, который считает до 10 и после этого повторяет счет.
5. Чем сдвиговый регистр отличается от счетчика?
6. Какие функции выполняет и для чего может использоваться сдвиговый регистр?
Глава 35. Комбинационные логические схемы
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Описать функции шифраторов, дешифраторов, мультиплексоров, сумматоров, вычитающих устройств и компараторов.
• Различать схематические обозначения шифраторов, дешифраторов, мультиплексоров, сумматоров, вычитающих устройств и компараторов.
• Перечислить применения комбинационных логических схем.
• Начертить таблицы истинности для различных комбинационных логических схем.
Комбинационные логические схемы — это схемы, состоящие из комбинаций элементов И, ИЛИ, инверторов и образующие более сложные схемы. Выход комбинационных логических схем является функцией состояний их входов, типов использованных элементов и их соединений между собой. Наиболее часто встречающимися комбинационными логическими схемами являются шифраторы, дешифраторы, мультиплексоры и арифметические схемы.
Шифратор — это комбинационная логическая схема, имеющая один или более входов и создающая многоразрядный двоичный выход. Шифрование — это процесс преобразования любого символа клавиатуры или числа, поданного на вход в кодированный выход в двоичном или двоично-десятичном коде.
На рис. 35-1 изображен десятично-двоичный шифратор, называемый шифратором на «4». Его функция состоит в преобразовании отдельной цифры (от 0 до 9), поданной на вход, в четырех разрядный двоичный код на выходе. Это означает, что если на клавиатуре нажата цифра 4, то на вход 4 будет подан высокий уровень, или 1, а на выходе появится 4-разрядный код 0100.
Рис. 35-1. Десятично-двоичный шифратор.
На рис. 35-2 изображен десятично-двоичный приоритетный шифратор. Функция приоритета означает, что если две клавиши нажаты одновременно, то шифратор выдаст двоично-десятичный код, соответствующий большей десятичной цифре. Например, если на шифратор подать одновременно цифры 2 и 5, то он выдаст двоично-десятичный код 0101, соответствующий цифре 5. Шифраторы этого типа встроены в одну интегральную микросхему и состоят примерно из 30 логических элементов.
Рис. 35-2. Десятично-двоичный шифратор с приоритетом.
На рис. 35-3 изображено логическое обозначение шифратора с приоритетом. Шифраторы этого типа используются для преобразования десятичных чисел с клавиатуры в двоично-десятичный код 8421. Десятично-двоичный шифратор и десятично-двоичный приоритетный шифратор всегда можно найти там, где есть ввод с клавиатуры. Это калькуляторы, клавиатуры компьютеров, электронные пишущие машинки и телетайпы.
Рис. 35-3. Логическое обозначение десятично-двоичного шифратора с приоритетом.
35-1. Вопросы
1. Что такое шифрование?
2. Что делает шифратор?
3. В чем разница между обычным шифратором и приоритетным шифратором?
4. Нарисуйте логическое обозначение десятично-двоичного приоритетного шифратора.
5. Где применяются десятично-двоичные шифраторы?