Шрифт:
Ну и совсем нетрудно понять, что поскольку fгет — это чистый, синусоидальный сигнал, то из этого следует, что произойдет перенос модулирующего сигнала (речь, музыка) на fnp!
«Н»: Здорово! А какой обычно выбирается промежуточная частота?
«С»: Дорогой Незнайкин! Спросил бы ты это, скажем, лет 20 назад, то я не моргнув глазом, с чувством глубокой убежденности ответил бы так. А именно, что промежуточная частота строго стандартизирована и равна в Европе — 465 кГц, а в США и Японии — 455 кГц!
«А»: А сейчас, как писал Дюма, «20 лет спустя», разве это не так?
«С»: Мы еще не раз будем иметь возможность убедиться, что совсем не так!
Но не будем пока брать это в голову! Продолжай пожалуйста, Аматор!
«А»: …Так вот, давайте посмотрим, чему будет равна полоса пропускания полосового фильтра, настроенного на частоту 465 кГц, если его добротность — 100?
«Н»: Даже я могу легко подсчитать, что полоса составляет 4,65 кГц!
«А»: И это в то самое время, как каналы от f1 и до f6 по-прежнему разделены промежутком в 10 килогерц! Прошу взглянуть на рис. 6.4.
Теперь в полосе приема оказалась ТОЛЬКО ОДНА СТАНЦИЯ! Поскольку после смешения частот и получения fпром в АЧХ «вмещается» только ОДИН канал! Приведем численное обоснование сказанного:
Итак,
f0 = 10 МГц; fгет = 10,465 МГц;
тогда:
fгет — fпром = 465 кГц!
Рассмотрим ситуацию с ближайшим каналом, частота которого равна:
f3 = 10,010 МГц.
При той же частоте гетеродина, равной 10,465 МГц, имеем:
fгет — f3 = 10,465 МГц — 10,010 МГц = 455 кГц.
В полосу пропускания контура промежуточной частоты f3 уже НЕ ПОПАДАЕТ!
«Н»: Вот что дает перенос полезного сигнала на новую несущую, равную fпром!
Мне кажется, что добротности, равной 100, здесь даже многовато!
«С»: Совершенно верно! Поэтому полосовые фильтры на 465 кГц, используемые для радиовещательных приемников, имеют обычно Q = 70–80. Попутно решалась задача, стоящая перед Армстронгом — как получить устойчивое высокое усиление для сигнала радиочастоты.
«Н»: А разве для ВЧ сигнала действительно необходимо высокое усиление?
«А»: Давай посмотрим… Пусть на антенном входе интересующая нас станция развивает сигнал, величина которого равна 50 микровольт!
«Н»: Так мало?
«А»: Ты хотел сказать — так много?! Потому что сигнал, обычно, несколько меньше!.. Подать на вход детектора необходимо хотя бы милливольт 100–200! Таким образом, даже при самом грубом подсчете, коэффициент усиления по напряжению до детектора — порядка нескольких тысяч! А реально, учитывая потери в аттенюаторе, преобразователе частоты и т. п. — несколько десятков тысяч раз!
«С»: А то и больше!
«А»: Однако сделать хороший усилитель высокой частоты (имеется в виду — однокаскадный) с коэффициентом усиления по напряжению «всего» 50 раз — задача очень непростая!
Ты, Незнайкин, еще вспомнишь мои слова насей счет! В то же время сделать хороший УПЧ с коэффициентом усиления НЕСКОЛЬКО ТЫСЯЧ — задача значительно более легкая!
«Н»: Ты меня убедил! А что, недостатков у супергетеродина действительно нет?
«А»: Да может ли такое быть? Это ведь не божественная сущность, а техническое устройство!
Основными недостатками супергетеродина является наличие ДВУХ крайне нежелательных каналов приема, которые всегда существуют независимо от того, в каком диапазоне осуществляется прием…
«С»: Я, пожалуй, не стал бы так категорически утверждать, что «всегда», хотя для рассмотренной структурной схемы супергетеродина Армстронга-Леви это действительно справедливо!.. Но дорогой Аматор, прошу прощения за вмешательство!