Шрифт:
Рис. 25. Двухфазный асинхронный двигатель:
а — вид в разрезе (1 — обмотки статора; 2 — ротор); б — микродвигатель;в — УГО (РО — рабочая обмотка; УО — управляющая обмотка)
Таким образом, поле одной обмотки относительно ее оси (перпендикулярной оси двигателя) колеблется по синусоидальному закону, а второй — по косинусоидальному. Сложение этих взаимно перпендикулярных колебаний приводит к появлению суммарного магнитного поля, вращающегося вокруг оси статора. Смещение фазы напряжения второй обмотки на 90° в большинстве случаев получают за счет питания этой обмотки через конденсатор.
Принцип двухфазного двигателя был предложен итальянским ученым Г. Феррарисом и американским ученым и инженером, сербом по национальности, Н. Тесла практически одновременно во второй половине XIX в.
Еще более поразительным по своей оригинальности и простоте является второй вариант, предложенный в 1888 г. русским инженером-электриком, работавшим в германской компании АЭГ, М. О. Доливо-Добровольским. В его конструкции на статоре под углом 120° друг к другу размещались три фазные обмотки, питаемые от трехфазной сети переменного тока (напряжения отдельных фаз в этой сети имеют временной сдвиг, равный 1/3 периода). В результате образовывалось вращающееся магнитное поле.
В асинхронных двигателях это поле, пересекая проводники обмотки ротора, индуцирует в них ЭДС, которая создает ток в этих проводниках, если они замкнуты, например, как в короткозамкнутом роторе (по типу беличьей клетки, также предложенной М. О. Доливо-Добровольским). Взаимодействие вращающегося магнитного поля статора и проводников с токами в роторе приводит к появлению сил Ампера и вращающего момента. Ротор вращается вслед за полем статора, но с некоторым скольжением, т. е. асинхронно.
В мощных синхронных двигателях ротор в большинстве случаев представляет собой электромагнит. Для этого на валу размещают два сплошных контактных кольца (не путайте с коллектором) и питают обмотку ротора через щетки постоянным током, например от выпрямителя (двигатель при этом все равно относится к машине переменного тока — по принципу действия и питанию обмотки статора).
В маломощных двигателях ротор и вовсе выполняют как постоянный магнит, и проблемы с его питанием и особенностями классификации исчезают.
В некоторых микродвигателях ротор выполняют из магнитотвердых материалов (гистерезисные двигатели) или придают асимметрию его магнитной системе (реактивные двигатели).
Пуск синхронного двигателя происходит на «асинхронном моменте», для этого в мощных двигателях дополнительно размещают короткозамкнутую обмотку, а в маломощных начальные токи индуцируются просто в металлическом теле ротора. Далее ротор втягивается в синхронизм, продолжая вращаться вслед за полем статора с той же угловой частотой.
Интересной особенностью синхронных двигателей является возможность электрической редукции частоты вращения ротора по отношению к частоте вращения поля статора. Проще всего понижение частоты вращения ротора (субсинхронный режим) достигают выполнением на роторе значительно большего числа зубцов, чем на статоре.
Развитие цифровой техники стимулировало появление специального типа синхронных двигателей — шаговых двигателей. Собственно один из первых лабораторных электродвигателей, предложенный итальянским физиком Сальваторе даль Негро в 1831 г., содержащий электромагнит с храповым колесом, был предтечей шаговых двигателей. Подобные устройства впоследствии широко применялись в телефонии и телеграфии («шаговый искатель», стартстопные аппараты, импульсные механизмы дистанционной связи). Однако к середине прошлого века эта ветвь двигателестроения уже не развивалась. Появление ЭВМ привело к реанимации этого направления и бурному развитию дискретного привода.
Примером современного использования шаговых двигателей является привод перемещения считывающих и печатающих головок в различных устройствах.
В шаговых двигателях (рис. 26), имеющих ротор в виде постоянного магнита, последовательности импульсов в виде команд подаются на группы обмоток статора (имеющих 4, 6 или 8 выводов) так, что максимум суммарного поля поворачивается на определенный угол, ротор также поворачивается, следуя за полем и делая шаг, занимает новое положение.
< image l:href="#"/>Рис. 26. Шаговый двигатель:
а — общий вид; б — схема (А, В — управляющие обмотки; НВ — ротор)
Шаговые двигатели работают в комплекте с электронным коммутатором, переключающим обмотки управления на статоре с последовательностью и частотой, соответствующей заданной команде. Например, ротор может выполнять 48 шагов за один полный оборот, что соответствует угловому перемещению 7,5. Управление двигателями осуществляют от специальных микросхем или микроконтроллеров.
При подключении шаговых двигателей надо обратить внимание на рабочее напряжение, маркировку обмоток и величину вращающего момента.
Среди оригинальных конструкций микродвигателей, появившихся в последнее время, следует упомянуть пьезоэлектрические устройства, в которых колебания пьезокерамической пластинки через специальный упругий элемент приводят во вращение массивный ротор.
Антенно-фидерные устройства
Вертикальный провод и земля образуют род конденсатора, колебательный разряд которого и служит источником электромагнитных волн в окружающей среде.
А. С. Попов