Вход/Регистрация
Радиоэлектроника-с компьютером и паяльником
вернуться

Кардашев Генрих Арутюнович

Шрифт:

Тогда Майкл Фарадей, заявив, что Уитстон все делает не так, провел эксперименты по-своему. Но и ему не повезло — искры по-прежнему не было. И тогда-то третий ученый — американец, приехавший в Англию, взялся довести эксперимент до победного конца. Он быстро намотал провод плотной спиралью на палец, снял спираль с пальца и внутрь ее вставил железный стержень. Благо этого добра в лаборатории Фарадея было предостаточно. Затем он соединил эту спираль с одним из проводов, отходящих от термопары, и заявил, что как только уважаемым коллегам будет угодно, он получит желанную искру. И действительно, все отчетливо увидели искру. Фарадей восхищенно зааплодировал и воскликнул: «Ура, эксперименту янки! Но что же вы такое сделали?»». И Джозефу Генри, а это был именно он, пришлось объяснять самоиндукцию ученому, который всему миру уже был известен как человек, который открыл электромагнитную индукцию.

Катушка индуктивности может сосредотачивать в себе магнитную энергию, а конденсатор — электрическую. Если их соединить между собой, то они могут обмениваться энергией благодаря ее взаимным превращениям, и возможны электромагнитные колебания, аналогичные механическим. Теперь-то до электромагнитных колебаний всего один шаг. Сделаем еще один экскурс в историю.

Уильям Томсон, более известный как знаменитый лорд Кельвин, по введенной им абсолютной шкале температур, в 1853 г. опубликовал работу «О преходящих электрических токах». В этой работе математически исследовалась зависимость разряда заряженного металлического шарика через тонкую проволочку на землю. Томсон рассматривает апериодические (т. е. непериодические) колебания в этой цепи в зависимости от ее параметров: емкости С, индуктивности L и активного сопротивления R. Идеальный случай (когда активное сопротивление R = 0) он не рассматривает, но именно этот случай дает знаменитую формулу для периода свободных колебаний, названную позже формулой Томсона:

«Томсоновским» назвали, также простейший LC-контур, хотя на самом-то деле у него он был всего лишь шариком с проволочкой.

Частота электромагнитных колебаний f и колебаний, распространяющихся в пространстве — электромагнитных волн обратно пропорциональна их периоду

Если принять скорость распространения радиоволн в свободном пространстве равной скорости света с = 3·108 м/с, то не трудно пересчитать частоту f в длину волны  = c/f, или наоборот,

При проведении этих расчетов надо внимательно следить за применяемыми единицами измерений. Помимо «обычной» частоты, измеряемой в герцах (Гц, Hz), используется также и круговая или циклическая частота

Попробуем дать примерные оценки того, на какую частоту был настроен колебательный контур Томсона в его исторических опытах. Для этого примем, что шар-конденсатор имел диаметр 10 см, а провод имел длину 1 м (сопротивлением пренебрежем). Так вот, в XIX веке единицам измерений еще не давали имен ученых, и в области электростатики была система единиц, по которой емкость измерялась в сантиметрах. Соответственно, в области магнетизма была система единиц, по которой индуктивность также измерялась в сантиметрах. Поэтому в отсутствие диэлектриков и намагничивающихся тел оценки этих параметров можно проводить непосредственно по их геометрическим размерам.

При пересчете на современные единицы 1 сантиметр емкости примерно равен 1 пикофараде, а 1 сантиметр индуктивности 1 наногенри. Таким образом, в приводимом примере L ~= 100 см = 100 нГн = 10– 7 Гн; С ~= 10 см = 10 пФ = 10– 11 Ф. Отсюда, по формуле Томсона, период ~= 2·10 – 8 с и частота, как обратная величина, составит 5·10– 7 Гц = 50 МГц. Значит, если бы во времена Томсона-Кельвина существовало бы радиовещание, то Лорд, став радиолюбителем и используя свой контур в соответствующем радиоприемнике, мог бы наслаждаться приемом станций УКВ диапазона.

Моделирование колебательных контуров

В компьютерной программе EWB открываем панель 

Basic (основные компоненты) и выводим на рабочее поле элементы: индуктивный L1 и емкостной С1. Соединив эти элементы последовательно, образуем последовательный колебательный контур. Возбуждение колебаний в контуре будем проводить от генератора синусоидальных колебаний.

Открыв в программе EWB группу Source (источники)

, выберем в ней по пиктограмме
 AC Voltage Source (источник переменного напряжения). Для этого источника можно провести необходимую установку параметров (амплитуды, частоты и начальной фазы). Здесь (рис. 66) для источника Е1 выбрана амплитуда 1 В, частота 50 Гц и начальная фаза 0°.

Рис. 66. Окно установки параметров генератора в EWB

Основными характеристиками контура являются амплитудно-частотная характеристика (АЧХ) и фазочастотная характеристика (ФЧХ). Для получения этих характеристик в программе EWB предусмотрен специальный виртуальный прибор: Боде-плоттер.

Соберем схему согласно рис. 67. Исследуемый контур L1C1 подключен к генератору Е1.

Рис. 67. Модель последовательного колебательного контура в EWB

Боде-плоттер выбирается в группе 

Instruments (инструменты) по пиктограмме
. Вход плоттера IN на условном графическом изображении прибора 
надо соединить со входом контура, а его выход OUT с источником выходного сигнала (подсобного измерительного резистора R1, вносящего небольшие потери). Для получения частотных характеристик после сборки схемы необходимо вызвать изображение лицевой панели, дважды щелкнув ЛКМ по условному графическому изображению прибора.

  • Читать дальше
  • 1
  • ...
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: