Вход/Регистрация
Нейронный сети. Эволюция
вернуться

Кан Каниа

Шрифт:

А как тогда поступить в этом случае? Как узнать изменение скорости по кривой?

Применение дифференциального исчисления, понятие производной

После трех минут с момента начала движения (t=3), скорость составит 9 км/мин. Сравним со скоростью в конце пятой минуты. После пяти минут с момента начала движения (t=5), скорость составляет 25 км/мин. Не важно, что скорость 25 км/мин – сопоставима со скоростью пули, ведь это воображаемая машина, и едет она с той скоростью, с какой мы захотим. Если провести касательную линию в этих точках, то окажется, что угол наклона у них совершенно разный:

Вы видите, что чем больше скорость в точке касательной, тем её наклон круче. Оба наклона представляют искомую скорость изменения скорости движения. Можно сравнить с вторым примером – линейное изменение.

Но как измерить наклон этих линий? Для этого давайте представим, что наша касательная (t = 3, s = 9), пересекает функцию в двух точках, расстояние между которыми очень мало:

Зная координаты этих точек и проведя проекции по осям, можно вычислить расстояние между этими точками.

Если представить прямоугольный треугольник где гипотенуза – это прямая между двумя точками, а его катеты равны разности проекциям точек по осям (t и s), то поделив противолежащий катет на прилежащий получим тангенс угла, который и будет являться коэффициентом крутизны. Зная который, как во втором примере, мы легко определим изменение скорости в момент t.

Как мы знаем, скорость изменения – это наклон прямой, которую из второго примера мы уже умеем находить. Значит, около точки (t=3), наш коэффициент крутизны будет равен:

Значит, скорость изменения скорости в момент времени три минуты составляет 6,06 км/мин.

Производная функции

Мы можем говорить о скорости изменения чего угодно – физической величины, экономического показателя и так далее.

Рассмотрим функцию y = f(x). Отметим на оси X, некоторое значение аргумента x, а на оси Y – соответствующее значение функции y = f(x).

Дадим аргументу x, некоторое приращение, обозначенное как х. Попадаем в точку х+х. А соответствующие этим значениям аргументов, значение функции обозначим соответственно f(x), f и f(x+х). Приращение аргумента х, есть аналог промежутка времени t, а соответствующее приращение функции – это аналог пути s, пройденного за время t.

Если представить, что х – бесконечно мала, т.е. стремиться к нулю (х-›0), то выражение нахождения изменения скорости можно записать как:

Или исходя из геометрического представления, описанного ранее:

Отсюда вывод, что производная функции f(x) в точке х – это предел отношения приращения функции к приращению её аргумента, когда приращение аргумента стремиться к нулю.

Нахождение некоторых табличных производных

Решим найденным способом, наш первый пример, когда скорость автомобиля была постоянной, на всем промежутке времени. В этом примере, приращение функции равно нулю (s = 0), и соответственно тангенса угла не существует:

s = s(t+t) – s(t) = s(t) – s(t) = 0

Итак, имеем первый результат – производная константы равна нулю. Этот результат мы уже выводили ранее:

Откуда можно сформулировать правило, что производная константы, равна нулю.

s(t) = с, где с – константа

с' = 0

Запись с' – означает что берется производная по функции.

Во второй примере, когда изменение скорости автомобиля проходило линейно, с постоянным изменением, найти производную функции (s = 0,2t + 1,5), не зная правил дифференцирования сложных функций, мы пока не сможем, поэтому отложим этот пример на потом.

  • Читать дальше
  • 1
  • ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: