Вход/Регистрация
Нейронный сети. Эволюция
вернуться

Кан Каниа

Шрифт:

Представим ось значение, как ось ошибка. Очень хорошо видно, что функция ошибки общая для всех значений весов. Соответственно – координаты точки значения ошибки, при определенных значениях весовых коэффициентов, тоже общие.

При нахождении производной функции ошибки (угол наклона спуска в точке), по каждому из весовых коэффициентов, находим новую точку функции ошибки, которая обязательно стремиться двигаться в направлении её уменьшения. Тем самым, находим вектор направления.

А обновляя веса в соответствии со своим входом, на величину угла наклона, находим новые координаты этих коэффициентов. Проекции этих новых координат на ось ошибки (значение низ лежащей точки на графике), приводят в ту самую новую точку функции ошибки.

Как происходит обновление весовых коэффициентов?

Для ответа на этот вопрос, изобразим наш гипотетический рельеф в двумерной плоскости (гипотетический – потому что функция ошибки, зависящая от аргумента весовых коэффициентов, нам не известна). Где значение высоты будет ошибка, а за координаты по горизонтали нахождения точки в данный момент, будет отвечать весовой коэффициент.

Тьму, через которую невозможно разглядеть даже то, что находится под ногами, можно сравнить с тем, что нам не известна функция ошибки. Так как, даже при двух, постоянно изменяющихся, параметрах неизвестных в функции ошибки, провести её точную кривую на координатной плоскости не представляется возможным. Мы можем лишь вычислить её значение в точке, по весовому коэффициенту.

Свет от фонаря, можно сравнить с производной – которая показывает скорость изменения ошибки (где в пределах видимости фонаря, круче склон, чтоб сделать шаг в его направлении). Следуя из основного понятия производной – измерения изменения одной величины, когда изменяется вторая, применительно к нашей ситуации, можно сказать что мы измеряем изменение величины ошибки, когда изменяются величины весовых коэффициентов.

А шаг, в свою очередь, отлично подходит на роль обновления нашего весового коэффициента, в сторону уменьшения ошибки.

Вычислив производную в точке, мы вычислим наклон функции ошибки, который нам нужно знать, чтобы начать градиентный спуск к минимуму:

Ij – определитель веса, в соответствии со своим входом. Если это вход x1 – то его весовой коэффициент обозначается как – w11, а у входа х2 – обозначается как -w21. Чем круче наклон касательной, тем больше скорость изменения ошибки, тем больше шаг.

Запишем в явном виде функцию ошибки, которая представляет собой сумму возведенных в квадрат разностей между целевым и фактическим значениями:

Разобьем пример на более простые части, как мы это делали при дифференцировании сложных функций:

Продифференцируем обе части поочередно:

Так как выход нейрона – f(x) = y, а взвешенная сумма – у = I wij*xi, где xi – известная величина (константа), а весовые коэффициенты wij – переменная, производная по которой, дает как мы знаем единицу, то взвешенную сумму можно разбить на сумму простых множителей:

Откуда нетрудно найти:

Значит, для того чтобы обновить весовой коэффициент по своей связи:

Прежде чем записать окончательный ответ, избавимся от множителя 2 в начале выражения. Мы спокойно можем это сделать, поскольку нас интересует только направление градиента функции ошибки. Не столь важно, какой множитель будет стоять в начале этого выражения, 1, 2 или любой другой (лишь немного потеряем в масштабировании, направление останется прежним). Поэтому для простоты избавимся от неё, и запишем окончательный вид производной ошибки:

Всё получилось! Это и есть то выражение, которое мы искали. Это ключ к тренировке эволюционировавшего нейрона.

Как мы обновляем весовые коэффициенты

Найдя производную ошибки, вычислив тем самым наклон функции ошибки (подсветив фонариком, подходящий участок для спуска), нам необходимо обновить наш вес в сторону уменьшения ошибки (сделать шаг в сторону подсвеченного фонарем участка). Затем повторяем те же действия, но уже с новыми (обновлёнными) значениями.

Для понимания как мы будем обновлять наши коэффициенты (делать шаги в нужном направлении), прибегнем к помощи так уже нам хорошо знакомой – иллюстрации. Напомню, величина шага зависит от крутизны наклона прямой (tg). А значит величина, на которую мы обновляем наши веса, в соответствии со своим входом, и будет величиной производной по функции ошибки:

Вот теперь иллюстрируем:

<
  • Читать дальше
  • 1
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: