Шрифт:
Анализ полученных результатов в области лазерных технологий показывает, что сдерживающим фактором при внедрении в промышленное производство применительно к микроэлектронике является недостаточная изученность физических процессов взаимодействия лазерного излучения с полупроводниковыми и пленочными структурами, отличающимися по своим оптическим и теплофизическим характеристикам. Кроме того, при лазерной обработке компонентов интегральных схем не всегда учитываются нелинейные параметры теплоемкости, теплопроводности, коэффициентов поглощения и отражения обрабатываемых структур, оказывающих существенное влияние на режимы обработки и воспроизводимость параметров технологического процесса. Сдерживающим фактором, несмотря на достигнутые успехи, является также недостаточный выбор источников лазерного излучения и отсутствие лазерного промышленного оборудования.
Успехи фотонных технологий были бы невозможны без достаточно развитой техники лазерного приборостроения и оборудования быстрой термической обработки полупроводниковых структур БИС, использующих некогерентные источники излучения.
Рис. 1. Классификация традиционных и фотонно-стимулированных технологических процессов
1. Взаимодействие фотонного излучения с полупроводниковой поверхностью
1.1. Оптические свойства полупроводниковой структуры
Как известно, излучение, падающее на поверхность пластины, частично отражается, поглощается и может также пропускаться. Поэтому справедливо выражение для плотности потока излучения
где РR, PA, PT – части плотности мощности потока облучения отраженного, поглощенного и пройденного сквозь пластину соответственно.
Первое слагаемое в правой части определяется коэффициентом отражения RS, второе и третье – коэффициентом поглощения и толщиной пластины.
Проникновение излучения в глубину твёрдого тела описывается законом Бугера – Ламберта
где – коэффициент поглощения, x – координата по глубине. Тогда часть излучения, поглощенная пластиной толщиной dS, без учёта внутренних отражений будет равна
а выражение для плотности потока, прошедшего сквозь пластину, имеет вид
Уменьшение интенсивности фотонного излучения, проходящего через твёрдое тело, происходит за счёт взаимодействия с поглощающими центрами. Важнейшей оптической характеристикой облучаемой структуры является коэффициент поглощения.
В силу зависимости последнего от многих факторов (таких, как тип материала, концентрация легирующих примесей, дефектность структуры, температура, а также длина волны излучения) для адекватного моделирования рассматриваемых процессов необходим детальный анализ механизмов поглощения.
Полный коэффициент поглощения равен сумме коэффициентов поглощения различными центрами:
В полупроводниках различают пять основных типов оптического поглощения:
– собственное;
– поглощение на свободных носителях;
– поглощение на локализованных состояниях;
– экситонное;
– решеточное [11, 12].
Световая волна, попадая в проводящую среду, воздействует на подвижные носители заряда. Электроны, ускоряясь, увеличивают свою энергию за счёт энергии волны. Сталкиваясь с решеткой, они отдают свою энергию решетке. Спектральная зависимость коэффициента поглощения свободными носителями заряда имеет вид
где е – заряд электрона; n, , mef – концентрация, подвижность и эффективная масса носителей заряда соответственно; с – скорость света в вакууме; 0 – диэлектрическая постоянная;
Если энергия фотонов больше ширины запрещённой зоны, то имеет место собственное поглощение, при котором электрон из валентной зоны может переходить в зону проводимости. При этом различают прямые и непрямые переходы электронов. В последних, характерных для кремния, наряду с фотоном и электроном участвует третья частица – фонон. Выражения для коэффициента собственного поглощения имеют вид
где h – энергия фотона; Eg – ширина запрещенной зоны; EP – энергия фонона; А – константа [11, 13].
Фотон может также поглощаться электроном или дыркой, находящейся в локализованном состоянии. При этом заряженная частица переходит либо в свободное, либо в другое локализованное состояние.