Вход/Регистрация
Химические и нефтяные аппараты с мешалками
вернуться

Ефанов Константин

Шрифт:

Метод Релея состоит в том, что в конкретный момент времени находится перемещение точек вала по формулам статической деформации. Для других моментов времени перемещения могут отличаться от выбранного момента времени. Так как действующая на вал сила Р, состоящая из веса груза и сил инерции

зависит от времени.

__

Рассмотрим по методу Релея колебания консольной балки (вала) с защемленным концом [2,с.73].

р – круговая частота собственных колебаний в этом примере и ниже.

Обобщенное перемещение:

Кинетическая энергия груза:

в этом уравнении квадрат скорости

Кинетическая энергия элемента балки dc:

Уравнение упругой линии:

Минуя выкладки, полная кинетическая энергия системы:

Потенциальная энергия системы:

Уравнение Лагранжа:

В этом уравнении круговая р0 частота:

Статический прогиб на консоли балки:

И

Решение уравнения

:

– период колебания

– частота

– круговая частота

__

Рассмотрим по методу Релея колебания двухопорной однопролетной балки (вала), нагруженной сосредоточенной силой посередине [2,с.65].

Обобщенное перемещение:

Кинетическая энергия груза:

Уравнение упругой линии:

Интегрируя последовательно:

Прогиб:

Прогиб посередине пролета:

Следовательно,

Как видно, прогибы x и xc являются динамическими прогибами, а не статическими, и имеют переменное значение, зависящее от времени.

Так, формула прогиба

имеет переменное от времени значение так как сила Р, состоящая из веса груза и сил инерции
зависит от времени.

Кинетическая энергия стержня:

Полная кинетическая энергия системы:

Потенциальная энергия системы:

Уравнение Лагранжа:

Эта формула аналогична формуле

движения груза, подвешенного на пружине, имеющий общий интеграл
.

Используя этот интеграл находим:

– период:

– частоту

– круговая частота

Если собственную массу балки не учитывать:

Т.е. к массе мешалки необходимо прибавить

от веса вала.

__

Рассмотрим по методу Релея колебания двухопорной однопролетной балки (вала), нагруженной сосредоточенной силой в произвольном положении [2,с.70].

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: