Шрифт:
Область мысленных образов неоднородна. Недавние исследования показали, что существует два разных вида визуальных образов и, соответственно, два типа людей. Люди, мыслящие объектно, обычно представляют образы, которые сами по себе очень иллюстративны, сфокусированы на фактическом внешнем виде предметов, с акцентом на форму и свойства поверхности, такие как цвет и текстура. В свою очередь мозг людей, мыслящих пространственно, обычно генерирует более схематичные изображения, фокусирующиеся на пространственных отношениях между объектами и их составными частями, а также на пространственных трансформациях [44] .
44
Kozhevnikov M., Hegarty M., Mayer R.E. (2002) Revising the visualiserverbaliser dimension: evidence for two types of visualisers // Cognition & Instruction, № 20: 47–77; Kozhevnikov M., Kosslyn S.M., Shephard J. (2005) Spatial versus object visualisers: A new characterisation of cognitive style // Memory & Cognition, № 33: 710–726; Blajenkova O., Kozhevnikov M., Motes M.A. (2006) Object-spatial imagery: a new self-report imagery questionnaire // Applied Cognitive Psychology, № 20: 239–263.
Недавно мы провели исследование: сохраняются ли для тактильных и мультисенсорных репрезентаций те же объектные и пространственные измерения, что и для визуальных [45] . Мы использовали идею о том, что люди с объектным мышлением считывают информацию о свойствах поверхности лучше, чем люди с пространственным мышлением. Для проверки этой гипотезы мы использовали задания, подразумевающие распознавание формы при изменении текстуры, и распознавание текстуры при изменении формы [46] . В процессе как зрения, так и осязания, распознавание формы ухудшалось из-за изменений текстуры у тех, кто мыслил объектно, но не у тех, кто мыслил пространственно. В то же время распознавание текстур ухудшалось из-за изменений формы именно у мыслящих пространственно, а не у мыслящих объектно. Аналогичная картина наблюдалась и в условиях кросс-модальности, когда участники получали доступ к мультисенсорному, независимому от точки обзора, образу, опыту, описанному выше [47] . Люди, мыслящие объектно, хуже распознавали форму при изменении текстуры, в то время как люди с пространственным мышлением продолжали различать форму, независимо от того, изменилась текстура или нет [48] . Таким образом, раскрытие роли объектных и пространственных образов дает больше преимуществ, чем использование недифференцированного подхода, сфокусированного только на визуальном образе. Это разделение важно, потому что и зрение, и осязание кодируют пространственную информацию об объектах – например, размер, форму и различные характеристики объекта. Такая информация вполне может быть использована в качестве независимого от модальности восприятия пространственного образа [49] . Подтверждение этой гипотезы можно найти в одном недавнем исследовании, показывающем, что оценки пространственных образов, в отличие от объектных, были согласованы друг с другом с высокой точностью именно при кросс-модальном, а не внутримодальном распознавании объектов [50] .
45
Lacey S., Lin J.B., Sathian K (2011) Object and spatial imagery dimensions in visuo-haptic representations // Experimental Brain Research, № 213: 267–273.
46
В задании использовались деревянные блоки, имевшие разные текстуру за счет покрытия наждачной бумагой, бумагой с текстом, набранным шрифтом Брайля, бархатной тканью. Еще один блок оставался гладким (прим. науч. ред.).
47
Cм. Lacey S. et al. (2009b).
48
Lacey S. et al. (2011).
49
Lacey S., Campbell C. (2006) Mental representation in visual / haptic crossmodal memory: Evidence from interference effects // Quarterly Journal of Experimental Psychology, № 59: 361–376.
50
Lacey S. et al. (2007a).
Основная область коры головного мозга, участвующая в распознавании визуально-тактильной информации – это латеральная затылочная кора (ил. 1), известная как область, отвечающая за визуальное восприятие объектов [51] . В то же время часть латеральной затылочной коры различает объекты как во время зрительной активности, так и при осязании [52] . Эта область коры головного мозга активна как во время осязательного трехмерного восприятия [53] , так и во время тактильного двухмерного восприятия формы [54] . Считается, что она отвечает за восприятие геометрических форм в пространстве: она не участвует в распознавании объекта в случае, если человек слышит специфический для данного объекта звук [55] , однако начинает реагировать на этот звук после соответствующей тренировки, когда звуковое распознание объекта становится возможным с помощью устройств визуально-слухового сенсорного замещения [56] . Такие устройства преобразовывают визуальную информацию о форме объектов в звуковой поток или «звуковой ландшафт», звучание которого меняется в зависимости от того, какие объекты попадают в камеру: за длину объектов (горизонтальная ось) отвечает длительность звука и стереопанорамирование, за высоту объектов (вертикальную ось) – тон звука, а яркость объектов передается за счет изменения громкости. В результате длительного обучения люди получают возможность извлекать информацию о форме объектов из данных звуковых ландшафтов, что позволяет распознавать знакомые объекты и даже использовать эту информацию при взаимодействии с незнакомыми объектами. Однако это становится возможно только в случае, если человек (зрячий the lateral occipital complex // Nature Neuroscience, № 10: 687–689. или незрячий) обучен данным правилам (понимает, что означают конкретные звуки), а не просто запомнил произвольные звуковые ассоциации [57] . В целом все это подтверждает, что латеральная затылочная кора занимается обработкой информации именно о форме объекта, вне зависимости от того, в какой сенсорной модальности происходит процесс восприятия объекта. Несколько теменных областей коры также демонстрируют мультисенсорное распознавание формы. К их числу принадлежит задняя часть первичной соматосенсорной коры (ил. 1) [58] , которая обычно не относилась к числу мультисенсорных несмотря на то, что нейрофизиологические исследования обезьян позволяют говорить о том, что части первичной соматосенсорной коры отзываются также на визуальную стимуляцию [59] . Визуально-тактильное распознавание формы было зафиксировано также в различных частях внутритеменной борозды (ил. 1) в теменной доле, находящейся непосредственно в коре головного мозга, которая играет важную роль в мультисенсорном восприятии [60] .
51
Malach R., Reppas J.B., Benson R.R., Kwong K.K., Jiang H., Kennedy W.A., Ledden P.J., Brady T.J., Rosen B.R., Tootell R.B. (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex // Proceedings of the National Academy of Sciences USA, № 92: 8135–8139.
52
Amedi A., Malach R., Hendler T., Peled S., Zohary E. (2001) Visuohaptic object-related activation in the ventral visual pathway // Nature Neuroscience, № 4: 324–330; Amedi A. et al. (2002).
53
Amedi A. et al. (2001); Zhang M. et al. (2004); Stilla R., Sathian K. (2008).
54
Stoesz M., Zhang M., Weisser V.D., Prather S.C., Mao H., Sathian K. (2003) Neural networks active during tactile form perception: Common and differential activity during macrospatial and microspatial tasks // International Journal of Psychophysiology, № 50: 41–49; Prather S.C. et al. (2004).
55
Amedi A. et al. (2002).
56
Amedi A., Stern W.M., Camprodon J.A., Bermpohl F., Merabet L., Rotman S., Hemond C., Meijer P., Pascual-Leone A. (2007) Shape conveyed by visual-to-auditory sensory substitution activates
57
Amedi A. et al. (2007).
58
Stilla R., Sathian K. (2008).
59
Zhou Y.-D., Fuster J.M. (1997) Neuronal activity of somatosensory cortex in a cross-modal (visuo-haptic) memory task // Experimental Brain Research, № 116: 551–555; Iwamura Y. (1998) Hierarchical somatosensory processing // Current Opinion in Neurobiology, № 8: 522–528.
60
Grefkes C., Weiss P.H., Zilles K., Fink G.R. (2002) Crossmodal processing of object features in human anterior intraparietal cortex: An fMRI study implies equivalencies between humans and monkeys // Neuron, № 35: 173–184; Saito D.N., Okada T., Morita Y., Yonekura Y., Sadato N. (2003) Tactile-visual cross-modal shape matching: A functional MRI study // Cognitive Brain Research, № 17: 14–25; Stilla R., Sathian K. (2008).
Ил. 1. Схема строения долей левого полушария головного мозга человека, демонстрирующая основные области, упомянутые в тексте.
Ключевой вопрос об осязательной или тактильной активации областей коры головного мозга, которые, как предполагалось, отвечают за зрительное восприятие, состоит в следующем: является ли эта активация побочным явлением всего процесса или же действительно необходима для выполнения разных задач. Можно привести целых два доказательства того, что она действительно необходима.
Во-первых, изучение конкретных ситуаций пациентов с повреждением латеральной затылочной коры показывают, что она необходима как для тактильного, так и для визуального восприятия формы. В случае одного пациента такое повреждение привело как к тактильной, так и к зрительной агнозии (к неспособности распознавать объекты), хотя соматосенсорная кора и общие функции были в порядке [61] . Другой же пациент был не в состоянии изучать новые объекты ни визуально, ни тактильно [62] .
61
Feinberg T.E., Rothi L.J., Heilman K.M. (1986) Multimodal agnosia after unilateral left hemisphere lesion // Neurology, № 36: 864–867.
62
James T.W., James K.H., Humphrey G.K., Goodale M.A. (2006) Do visual and tactile object representations share the same neural substrate? // Touch and Blindness: Psychology and Neuroscience / Heller M.A., Ballesteros S. (Eds.) Mahwah: Lawrence Erlbaum Associates: 139–155.
Во-вторых, в некоторых исследованиях использовалась транскраниальная магнитная стимуляция (ТМС) для временного нарушения работы различных областей мозга, связанных с визуальным восприятием и вовлеченных в выполнение тактильных задач. Например, ТМС теменно-затылочной области во время тактильного распознавания объемного рельефа в виде полос разной ориентации на поверхности предметов [63] мешала выполнению этой задачи [64] . Одно из недавних исследований показало, что ТМС левой части латеральной затылочной коры нарушает процесс категоризации объектов [65] , что демонстрирует невозможность обработки информации об объектах без участия этой области мозга. Точно так же ТМС левой части внутритеменной борозды (IPS) нарушает визуально-тактильное (но не тактильно-визуальное) сопоставление форм предметов с использованием правой руки [66] , но ТМС ее правой части во время сопоставления форм с использованием левой руки не повлияла на процесс кросс-модального восприятия. Причина этого несоответствия неясна и только подчеркивает, что точные роли соматосенсорной, теменной областей и латеральной затылочной коры в мультисенсорной обработке форм еще предстоит полностью выяснить.
63
Sathian K. et al. (1997).
64
Zangaladze A., Epstein C.M., Grafton S.T., Sathian K. (1999) Involvement of visual cortex in tactile discrimination of orientation // Nature, № 401: 587–590.
65
Mullin C.R., Steeves J.K.E. (2011) TMS to the lateral occipital cortex disrupts object processing but facilitates scene processing // Journal of Cognitive Neuroscience, № 23: 4174–4184.
66
Buelte D., Meister I.G., Staedtgen M., Dambeck N., Sparing R., Grefkes C., Boroojerdi B. (2008) The role of the anterior intraparietal sulcus in crossmodal processing of object features in humans: An rTMS study // Brain Research., № 1217: 110–118.
Весьма вероятно, что активация части коры, связанной со зрением, запущенная благодаря тактильным импульсам, опосредуется визуальными образами [67] . Многие исследования показали, что латеральная затылочная кора активна во время задач визуализации: например, воссоздания мысленных образов знакомых объектов, которые могли быть ранее осязательно изучены незрячими или зрячими людьми [68] , или геометрических и материальных свойств объекта, которые сохранились в памяти [69] . Интересно, что индивидуальные различия в степени яркости визуальных образов становятся предиктором того, насколько активна правая часть латеральной затылочной коры во время тактильного восприятия формы [70] . Некоторые исследователи отказались от использования объяснения понятия визуальных образов по причине того, что мозг незрячих с рождения людей проявляет активность при восприятии формы в тех же областях, что и у зрячих. Поскольку люди, незрячие с рождения, не мыслят визуально, эти образы не могут полноценно ответить и на вопросы о мозговой активности зрячих людей [71] . Однако тот факт, что незрячие люди не могут использовать визуальные образы во время тактильного восприятия формы, определенно не является основанием для исключения этой способности у зрячих, особенно с учетом обширных данных о различиях в нейронной активности зрячих и незрячих людей [72] . Еще одно возражение заключалось в том, что активность латеральной затылочной коры во время процесса визуального познания составляет лишь около 20 % от активности, наблюдаемой во время тактильного изучения объекта. Следовательно, визуальные образы не так уж и важны во время тактильного восприятия формы [73] . Однако в этих исследованиях, как правило, не отслеживалась успешность выполнения задачи визуального восприятия, и поэтому низкая активность латеральной затылочной коры во время процесса визуализации могла просто означать, что участники выполняли задачу непоследовательно, либо не сохраняли визуальные образы на протяжении всего процесса изучения объектов.
67
Sathian K. et al. (1997).
68
De Volder A.G., Toyama H., Kimura Y., Kiyosawa M., Nakano H., Vanlierde A., Wanet-Defalque M.C., Mishina M., Oda K., Ishiwata K., Senda M. (2001) Auditory triggered mental imagery of shape involves visual association areas in early blind humans // NeuroImage, № 14: 129–139.
69
Newman S.D., Klatzky R.L., Lederman S.J., Just M.A. (2005) Imagining material versus geometric properties of objects: An fMRI study // Cognitive Brain Research, № 23: 235–246.
70
Zhang M. et al. (2004).
71
Pietrini P., Furey M.L., Ricciardi E., Gobbini M.I., WuW.-H.C., Cohen L., Guazzelli M., Haxby J.V. (2004) Beyond sensory images: Object-based representation in the human ventral pathway // Proceedings of the National Academy of Sciences USA, № 101; 5658–5663.
72
Sathian K. (2005) Visual cortical activity during tactile perception in the sighted and the visually deprived // Developmental Psychobiology, № 46: 279–286; Sathian K., Stilla R. (2010) Cross-modal plasticity of tactile perception in blindness // Restorative Neurology and Neuroscience, № 28: 271–281.
73
Amedi A. et al. (2001). Reed C.L., Shoham S., Halgren E. (2004) Neural substrates of tactile object recognition: An fMRI study // Human Brain Mapping, № 21: 236–246.
Альтернативная гипотеза заключается в том, что визуальные и тактильные импульсы сходятся друг с другом в мультисенсорной репрезентации, о чем свидетельствует сходство между зрительным и осязательным процессами обработки информации об образах (см. выше). Под «мультисенсорным» мы подразумеваем такой образ, который может быть закодирован и извлечен обратно множеством сенсорных систем и который сохраняет информацию о модальности входящих импульсов [74] . Мультисенсорная гипотеза подтверждается исследованиями об эффективных связях [75] этих модальностей. Такой результат был получен на основе данных функциональной магнитно-резонансной томографии (фМРТ), указывающих на существование восходящих (возникающих в первичных сенсорных областях мозга) проекций от первичной соматосенсорной коры к латеральной затылочной коре [76] , а также электрофизиологических данных, показывающих быстрое распространение активности также от первичной соматосенсорной к латеральной затылочной коре во время тактильного распознавания формы [77] . Однако исследователи [78] также нашли доказательства существования проекций обратной направленности (возникающих в областях, участвующих в более высоких когнитивных функциях, таких как создание мысленных образов). Это указывает на то, что репрезентации форм объектов в латеральной затылочной коре могут быть доступны как восходящим, так и нисходящим проекциям.
74
Sathian K. (2004) Modality, quo vadis?: Comment // Behavioral & Brain Sciences, № 27: 413–414.
75
В исследованиях с применением фМРТ можно обнаружить большое количество статистически значимых связей активности одного отдела мозга с другим, но на основании наличия корреляции невозможно установить причину этой связи. Особую ценность представляют поиски эффективных связей, которые отражают взаимное влияние отделов мозга друг на друга, и стоящие за ними нейрональные связи. Такие исследования требуют специального дизайна. О некоторых из них авторы статьи рассказывают дальше (прим. науч. ред.).
76
Peltier S., Stilla R., Mariola E., LaConte S., Hu X., Sathian K. (2007) Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception // Neuropsychologia, № 45: 476–483; Deshpande G., Hu X., Stilla R., Sathian K. (2008) Effective connectivity during haptic perception: A study using Granger causality analysis of functional magnetic resonance imaging data // NeuroImage, № 40: 1807–1814.
77
Lucan J.N., Foxe J.J., Gomez-Ramirez M., Sathian K., Molholm S. (2010) Tactile shape discrimination recruits human lateral occipital complex during early perceptual processing // Human Brain Mapping, № 31: 1813–1821.
78
Peltier S. et al. (2007); Deshpande G. et al. (2008).