Вход/Регистрация
Математические модели в естественнонаучном образовании
вернуться

Соломатин Денис

Шрифт:

1.3.11. Моделирование многих социальных процессов связано с диффузией. Даже на уровне математических идей их взаимное проникновение между самыми разными отраслями очень заметно. Простым примером является найм выпускников математических специальностей на работу программистами (верно и обратное, квалифицированные программисты как правило дополнительно получают качественную математическую подготовку). Простая модель представляет социальную группу программистов как единый пул с концентрацией незаурядных умов

, а группу профессиональных математиков как смежный отдел с концентрацией умов
. Если для простоты предположить, что оба интеллектуальных пула имеют единичный объем, то в течение фиксированного промежутка времени на одной итерации найма новых сотрудников общее количество сотрудников
 окажется неизменным. Если представить себе очень маленький фиксированный интервал времени, то увеличение
 за этот временной интервал будет пропорционально разности между
 и
. То есть
. Этот экспериментальный факт иногда называют законом Фика.

а. В каком диапазоне должен быть параметр

, чтобы эта модель имела смысл?

б. Используя тот факт, что

, формализуйте модель так, оставив лишь два параметра,
 и
, чтобы выразить
 через
.

в. Для

,
, и различных вариантов значений
, исследуйте модель с помощью программы onepop.m для MATLAB из задачи 1.2.4. Как изменится поведение модели, если использовать другое значение
?

г. Алгебраическим путём найдите точку равновесия

 (выразив её через
 и
) для этой модели. Согласуется ли это с тем, что вы видели в части (в)? Можете ли объяснить результат интуитивно?

д. Пусть

. Перепишите модель в виде зависимости от
, отклонения значений от точки равновесия, путем подстановки в
 и дальнейшего упрощения полученного выражения.

е. Используйте часть (д), чтобы найти формулу для

 , а затем для
. Убедитесь в том, что формула дает те же результаты, что и машинный эксперимент в onepop.m.

ж. Можно ли модифицировать модель так, чтобы описывалась диффузия между двумя отсеками разных размеров?

Проектные работы:

1. Предположим, что численность выпускников математических факультетов, трудоустраивающихся по специальности, имеет динамику, хорошо моделируемую дискретным разностным уравнением

.

Конечно, динамика этой численности всегда будет зависеть от значения

, но, выбрав соответствующие единицы измерения, можно зафиксировать
. Исследуйте влияние регулярного сокращения таких сотрудников при двух различных типах предположений.

а.

, где
 – некоторое фиксированное число сотрудников, сокращаемых на каждом этапе времени, например, ежегодно.

б.

, где
 – некоторый фиксированный процент сотрудников, сокращаемых на каждом временном этапе (
).

Рекомендации

 Чтобы почувствовать модели, исследуйте тему с помощью onepop.m из задачи 1.2.4 для множества разумных вариантов параметров. Опишите любое необычное поведение модели и попытайтесь его объяснить.

 Рассчитайте аналитически равновесия (которые могут быть выражены через

 и
 или
) и стабильность этих равновесий (которые также могут зависеть от
 и
 или
).

 Объясните равновесие и стабильность с точки зрения паутинных диаграмм. Какое влияние оказывает вычитание

 и
 на паутинную диаграмму логистической модели?

 Постарайтесь найти наибольшее

 или
 которое можно выбрать так, чтобы все еще было устойчивое равновесие. Если
 или
 выбраны как можно большими, чтобы все еще существовало стабильное равновесие (это вполне может быть экономически обоснованным), что произойдет с нестабильным равновесием?

 Если бы вы отвечали за управление моделируемой организации, было бы вам комфортно, если бы стабильное равновесие находилось близко к нестабильному?

 Существуют ли значения

, для которых
 может быть больше
? Имеет ли это какой-либо смысл?

 Если без проведения сокращений численность сотрудников не имеет устойчивого равновесия, то может ли принудительное сокращение привести к стабильности? Имеет ли это экономический смысл?

  • Читать дальше
  • 1
  • ...
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: