Шрифт:
6) проведение в одинаковых комфортных условиях до и после температурного воздействия исследований для оценки текущего уровня работоспособности при решении тестовых задач и динамики их восстановления после стресс-воздействия у испытателей;
7) создание высокой мотивации у испытателей при их участии в экспериментах.
3.2. Общие подходы моделирования условий деятельности и оценки функционального состояния человека-оператора
Программа экспериментальных исследований функционального состояния и работоспособности человека-оператора при различной степени гипертермии включала ряд серий экспериментальных исследований, в которых моделировались возможные сочетания структуры и интенсивности операторской деятельности и экзотермической нагрузки, характерные для предполетной и летной деятельности применительно к ЛА 4-го и перспективных поколений.
В зависимости от решаемых в различных сериях задач на операторе были одеты плавки, х/б белье, носки, демисезонные ботинки, кислородная маска КМ-34, защитный шлем ЗШ-5 или ЗШ-7. Использовался также вентилирующий костюм ВК-3М, ВК-3М(Д) с регулируемым распределением воздушного потока.
После одевания комплекта измерительных датчиков и летного снаряжения испытатель располагался в кабине стенда с температурой окружающей среды 17–25°С. Здесь проводилась регистрация фоновых показателей теплового состояния человека и оценивалась его работоспособность в комфортных условиях. По времени цикл занимал 20 мин.
Затем оператор переходил в кабину с высокой температурой окружающей среды в диапазоне 28–70°С. Принципиальная схема и общий вид стенда тренажера представлен на рис. 3.1 и 3.2.
Рис. 3.1 – Принципиальная схема стенда-тренажера моделирования факторов среды обитания и системы оценки функционального состояния человека-оператора
Рис. 3.2 – Стенд-тренажер моделирования факторов среды обитания и системы оценки функционального состояния человека-оператора
Следует подчеркнуть, что сложность явлений тепломассообмена в гермокабине самолета и в защитном снаряжении летчика потребовала от нас создания специального стенда тренажера. Последний был оборудован СКВ, аппаратурой, моделирующей летную деятельность, и контрольно-измерительными приборами. Стенд-тренажер был создан в 1984 г. в инициативном порядке С. М. Разинкиным (старший научный сотрудник), В. А. Мельниковым (инженер отдела), В. М. Духович (адъюнкт отдела) по расчетам подготовленными специалистами МАИ (Московский авиационный институт). Стенд был назван по первым буквам фамилий создателей РДМ-2, первый стенд РДМ-1 был создан для животных.
Серийная промышленная термобарокамера (например, ТБК-08 производства НПО «Звезда») (рис. 3.3) не могла обеспечить необходимых габаритов для симуляции явлений тепломассообмена в гермокабине самолета.
Рис. 3.3 – Промышленный образец термобарокамеры ТБК-8
Конструкция кабины стенда обеспечивала возможность пребывания в ней оператора при различных температурах воздуха с имитацией аэродинамического нагрева поверхности фонаря кабины. Система кондиционирования обеспечивала подачу воздуха в кабину, защитное снаряжение и на дыхание в подмасочное пространство.
Стенд представляет собой две расположенные рядом кабины объемом 2,2 м каждая, геометрические размеры которых приближены к кабинам самолетов-истребителей. Наличие двух кабин позволяло при проведении исследований поддерживать в одной из них комфортную температуру на уровне 15–25°С, а во второй – повышенную, а также при необходимости повышенную в обеих кабинах.
Нагревание камеры осуществлялось с помощью подачи в нее воздуха, нагретого до температуры 130–200°С в объеме до 300 л/мин посредством пропускания его по системе трубопроводов через электротуннель печи СУОЛ-1. Забор воздуха для нагревания производился из магистрали высокого давления, либо с помощью центробежных регуляторов из кабины, изменяя расход подаваемого воздуха и его температуру. Температура, задаваемая в камере во время эксперимента, поддерживалась с точностью 2°С. За счет постепенного притока горячего воздуха в кабину осуществлялось его перемешивание путем конвекции или с использованием средств принудительной вентиляции. Это позволяло поддерживать градиент температур голова–ноги, равный 8–12°С, отражающий реальный перепад температуры воздуха по вертикали в кабине самолета. В полете, а также при необходимости поддерживать практически равномерный нагрев, имитирующий нагрев ЛА в ожидании вылета, относительная влажность воздуха составляла 40–60% при температуре в камере 20–35°С и 6–10% при температуре 40,0–70,0°С.
При проведении исследований по оценке эффективности перспективных средств защиты летчика температура 60°С представляла собой среднюю температуру кабины. При этом температура воздуха в районе головы оператора находилась в диапазоне 66 ± 2°С, стен – 58 ± 2°С.
Внутренняя поверхность камер облицована листовым алюминием. Теплоизоляционный пакет из стекловаты, толщиной 5 см и фанеры (12 мм) обеспечивал температуру на внешней стороне обивки 20°С при температуре в камере +60°С.
Одновременно с началом эксперимента практически во всех исследованиях включалась шумовая фонограмма, транслируемая в кабину, где находился испытатель. Громкоговоритель располагался на уровне человека-оператора и позволял создать шум мощностью 85–90 дБ, аналогичный шуму в кабине летчика истребительной авиации.
Система кондиционирования воздуха, подаваемого на вентиляцию подкостюмного и подшлемного пространства, состояла из набора резиновых трубок 15 мм, соединенных с ротаметрами и регулировочными вентилями с помощью разъемных муфт. Горячая вентиляционная магистраль представляла собой трубку длиной 10 м, намотанную на барабан 0,2 м и помещенную в кабину стенда. Варьируя длину трубки, сматываемой с барабана и выводимой за пределы камеры, можно было изменять температуру подаваемого воздуха в пределах от комнатной до 10°С ниже температуры воздуха в камере.