Вход/Регистрация
Предчувствия и свершения. Книга 1. Великие ошибки
вернуться

Радунская Ирина Львовна

Шрифт:

Сложное из простого — мировоззрение современных материалистов — было также принципом древних материалистов. И то, что сложные фигуры они разрезали на простые, было логичным: их было легче анализировать, сопоставлять, измерять. А потом оставалось проинтегрировать, или, говоря упрощённо, сложить результаты. Такие методы были, конечно, нагляднее и проще витиеватых рассуждений, положенных в основу метода приведения к абсурду.

Для Архимеда эта находка была подобна

Аристотель в своём сочинении «О небе» писал: «Постулируя неделимые тела, Демокрит и Левкипп должны впасть в противоречие с основами математики… Самое маленькое отступление от истины в дальнейшем ходе рассуждения увеличивается в десятки тысяч раз… Введение самой маленькой величины расшатывает великие основы математики».

Амеры, к которым атомисты сводили геометрические построения, казались не в меру строгим философам горой на пути землемера.

Эта точка зрения была даже облечена в форму принципа, определяющего математическое мировоззрение античности: «Все научные системы истинны лишь постольку, поскольку они не основаны на предположении, что непрерывное состоит из неделимых».

Архимед же нарушал этот принцип, пользуясь запрещённым методом разделения сложных фигур на элементарные. Вот почему Архимед не пропагандировал свой метод. Вот почему после нескольких робких попыток заявить о нём он замолчал. Понимая огромную мощь этого метода, он втайне пользовался им. Однако при публикации облекал полученные результаты в форму общепринятых доказательств.

И вот теперь Архимед увидел, что он не одинок. Что такой мудрец, как Демокрит, при помощи «самых маленьких величин» — амер получал поистине чудесные результаты!

Архимед понял всю глубину заблуждения Платона: ведь тот знал метод Демокрита («Что касается отношений линий и площадей, то разве мы, эллины, не думаем, что их возможно измерять один другим?») и отказался от него («… но это никак и никаким образом невозможно…»)!

Не близорукость ли это?! Не деспотизм?!

Пусть методы Демокрита не строги, но они плодотворны. Архимед убедился в этом на примере собственных работ. Он не будет больше молчать. Он не должен далее таить свой метод. О нём нужно сообщить хотя бы математикам. И Архимед пишет «Послание к Эратосфену о механических теоремах» — «Эфод».

После традиционной фразы «Архимед Эратосфену желает благоденствовать!» он излагает программу книги: «Я уже посылал тебе найденные мною теоремы, предоставив найти их доказательства… В книге мы опишем, что было обнаружено нами при помощи механики… в конце же книги напишем геометрические доказательства тех теорем».

Цель ясна — на примерах показать мощь механических методов, а затем доказать их справедливость и законность, подтвердив верность полученных результатов при помощи безупречных традиционных геометрических методов.

Это намерение — не просто шаг от одного метода к другому. Это был бунт против традиции.

Бунт Архимеда

Протест Архимеда не ограничивается чисто математическими проблемами. Он впервые поднимает принципиальный методологический вопрос — о роли методов в развитии математики. Теперь, когда он получил опору в трудах древнего мудреца, когда он перестал чувствовать себя одиноким, он хочет доказать полезность своих методов. Он не только не стыдится их огласить, как это было раньше, а стремится подчеркнуть их возможности.

Дадим же слово Архимеду, пусть оно и покажется читателю несколько тяжеловесным. Он пишет Эратосфену:

«Зная, что ты являешься учёным человеком и по праву занимаешь выдающееся место в философии, а также при случае можешь оценить и математическую теорию, я счёл нужным написать тебе и в этой же самой книге изложить некоторый метод, при помощи которого ты получишь возможность при помощи механики находить некоторые математические теоремы. Я уверен, что этот метод будет тебе ничуть не менее полезен и для доказательства самих теорем. Действительно, кое-что из того, что ранее было мною усмотрено при помощи механики, позднее было также доказано и геометрически, так как рассмотрение при помощи этого метода ещё не является доказательством. Однако получить при помощи этого метода некоторое предварительное представление об исследуемом, а затем найти и само доказательство гораздо удобнее, чем производить изыскания, ничего не зная.

… Поэтому я и решил написать об этом методе и обнародовать его, с одной стороны, чтобы не оставались пустым звуком прежние мои упоминания о нём, а с другой — поскольку я убеждён, что он может принести математике немалую пользу. Я полагаю, что некоторые современные нам или будущие математики смогут при помощи указанного метода найти и другие теоремы, которые нам ещё не приходили в голову».

Архимед не случайно пишет Эратосфену. Этот учёный, несмотря на свою ортодоксальность, иногда отваживался вопреки Платону пользоваться при геометрических построениях не только циркулем и линейкой. Он сам придумывал инструменты и механизмы для вычерчивания кривых линий. Эратосфен отвергал мнение Платона о том, что математика должна подымать нас ввысь, а не низводить к бренному миру. Он не придавал значения словам Платона: «При таких решениях пропадает и гибнет благо геометрии, возвращающейся назад к чувственным вещам…» Эратосфен знал, что благодаря таким настроениям учение о пространственных фигурах, о пересечениях конических тел плоскостями долго игнорировалось математиками и даже не вошло в «Начала» Евклида. Ведь при помощи циркуля и линейки такие построения проводить невозможно.

Теперь мы знаем, что циркуль и линейка позволяют справиться лишь с решением задач, сводящихся к уравнениям первой и второй степени. А пересечения объёмных фигур (плоскостей с цилиндрами, конусами и шарами) приводят к задачам, сводящимся к уравнениям третьей и более высоких степеней.

Понимая это, Эратосфен придумал ряд приборов, позволявших решать такие трудные задачи. Значит, он отступал от традиций и лучше других мог понять новые идеи Архимеда.

Не здесь излагать глубокое математическое содержание «Эфода». Следует лишь ещё раз подчеркнуть, что это единственное известное нам сочинение Архимеда, где он нашёл в себе смелость бросить вызов аристотелевской традиции и открыто стать на защиту своего мощного метода.

  • Читать дальше
  • 1
  • ...
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: