Шрифт:
Здесь мы подходим к ошибке настолько распространенной, что с ней необходимо разобраться раз и навсегда. Многие полагают, что астронавты ничего не весят, потому что находятся далеко от Земли и до них не доходит ее гравитация. Нет-нет-нет! Космическая станция находится совсем недалеко от Земли, ближе, чем Дублин от Лондона, и гравитация Земли действует на нее почти так же сильно, как и на уровне моря. Нет, астронавты ничего не весят в том смысле, что если они встанут на весы, те покажут, что их вес равен нулю. И астронавт, и весы свободно парят внутри станции, поэтому тело астронавта не оказывает на весы никакого давления. Поэтому вес астронавта равен нулю.
Астронавт и весы, космическая станция и все, что в ней находится, парят в невесомости, потому что находятся в состоянии свободного падения. Они постоянно падают. Падают вокруг света. Сила гравитации действует на них по-прежнему, притягивает к центру Земли. Но одновременно они мчатся вокруг планеты на огромной скорости, так быстро, что каждый раз, когда падают на Землю, промахиваются. Это и означает, что они на орбите. Космическая станция на орбите парит совсем по другой причине, чем воздушный шар в состоянии аэродинамического равновесия. Воздушный шар поддерживается давлением окружающего воздуха. Поэтому воздушные шары не падают. А астронавты на орбите, наоборот, падают. Непрерывно. Луна все время падает – причем уже более четырех миллиардов лет. Падает вокруг света, падает на вечной орбите.
Невесомы ли аэронавты на воздушном шаре? Конечно, нет. Они прочно стоят ногами на полу корзины и не проявляют склонности плавно вылететь из нее, как будто астронавты на орбите. Если бы их взвесили на весах в корзине, весы показали бы их полный вес. Таким образом, настоящая невесомость для нас – последний способ преодолеть гравитацию. Невесомости можно достичь только благодаря последним достижениям научно-технического прогресса. Но постойте! Разве это правда, строго говоря? Давайте подумаем об этом с другой стороны.
Первым астронавтом на орбите был Юрий Гагарин. Он полетел в космос в 1961 году. США, стремясь поспеть за Советским Союзом, запустили в космос Алана Шепарда в том же году. Он не вышел на орбиту, а совершил, в сущности, очень высокий прыжок в высоту – больше 180 километров – ив конце концов плюхнулся обратно в Атлантический океан. Во время фазы ускорения Шепард был далеко не в невесомости. Если бы он тогда встал на весы, те показали бы в 6,3 раза больше его нормального веса.
Он на самом деле был в 6,3 раза тяжелее. Однако после того, как ракетные двигатели отключились, то есть основную часть подъема и почти весь спуск, пока не раскрылись парашюты, астронавт и его капсула были в состоянии свободного падения. И если бы он взял с собой весы, они бы на протяжении большей части этого поразительного прыжка показывали бы, что его вес равен нулю.
Теперь вернемся к вопросу, достигали ли невесомости другие животные, кроме людей. Предварительный ответ – нет, поскольку в ходе эволюции ни у кого не возник ракетный двигатель, позволяющий развить первую космическую скорость. Мы только что видели, что Алан Шепард, в отличие от Юрия Гагарина, не достиг первой космической скорости. Тем не менее оба испытали невесомость. А теперь вспомним о лучшей прыгунье на свете – блохе – и зададимся вопросом, чем она отличается от Алана Шепарда. В отсутствие ракетного двигателя блохе приходится задействовать мышцы.
Кстати, интересный вопрос, имеющий лишь косвенное отношение к нашей теме: мышцы не могут двигаться достаточно быстро, чтобы обеспечить такое внезапное взрывное ускорение, которое нужно, чтобы прыгнуть высоко, как блоха. Энергия блошиных мышц (неизбежно медленных) запасается в упругой пружине. Принцип здесь тот же, что и у рогатки, лука или арбалета. Рогатка способна запустить камень со скоростью намного большей, чем давали бы одни лишь мышцы руки, которые натягивают резинку. Натянутая резинка запасает энергию мышц. Блохи, как и другие прыгающие насекомые, например кузнечики, снабжены восхитительным эластичным материалом под названием резилин. Это эквивалент резинки в рогатке, но лучше, поскольку он суперэластичен. Мышцы блохи “заряжают” резилин, и на это нужно время. Затем запасенная упругая энергия резко высвобождается сразу в обеих ножках, и блоха прыгает высоко в воздух.
Согласно математической теории, абсолютная высота, на которую способно прыгнуть насекомое, никак не связана с его размером. На практике, разумеется, наблюдается колоссальное разнообразие, поскольку одни животные, скажем, блохи и кенгуру (и олимпийские прыгуны в высоту), специализируются на прыжках, а другие, к примеру, слоны и бегемоты (и я) этого не делают. Блоха прыгает на 20 сантиметров в высоту, что не слишком отличается от прыжка обычного человека на месте из положения стоя. Однако пропорционально размерам тела блохи этот прыжок – примерно то же самое, что для человека перепрыгнуть Эйфелеву башню. Другой пример чемпионов-прыгунов – пауки-скакунчики, очаровательные крошки, которые, чтобы подпрыгнуть, резко закачивают жидкость в свои полые лапы. Паук-скакунчик крупнее блохи, а прыгает примерно на такую же высоту, следуя правилу, что абсолютная высота прыжка не зависит от размеров.
ГИГАНТСКИЙ ПРЫЖОК АЛАНА ШЕПАРДА
И прыжок блохи – гораздо ниже, но не менее восхитительный.
Обе траектории – параболы, но с осложняющими факторами.
Теоретически, если пренебречь осложняющими факторами вроде сопротивления воздуха, траектория блохи, как и траектория паука-скакунчика, должна представлять собой изящную кривую, которую математики зовут параболой. Траектория Алана Шепарда – это просто увеличенная версия параболы блошиного прыжка с тем лишь уточнением, что во время первой части подъема его активно толкали вверх двигатели. А работа блошиного двигателя прекращается в тот миг, когда насекомое отрывается от земли. Кроме того, траектория Шепарда осложнялась различными маневрами, которыми он управлял вручную при помощи тормозной двигательной установки, а в конце еще и парашюта.