Вход/Регистрация
Интернет-журнал "Домашняя лаборатория", 2007 №1
вернуться

Журнал «Домашняя лаборатория»

Шрифт:

Рис. 5: Графики функций у = ах (красный), у = loga х (синий) и у = х (зеленый) — случай одной точки пересечения.

Рассмотрим уравнение линейного одномерного классического осциллятора с трением (уравнение затухающих колебаний):

х•• + 2?х• + w20х = 0. (1)

Соответствующее характеристическое уравнение

?2 + 2?? + w20 = 0 имеет корни

?1,2 = — ? ± ?(?2 — w20)

— ? ± ip,

где

p = ?(w20 — ?2)

Поэтому общее решение уравнения (1) есть:

x(t) = e– ?t(Ae– ipt + Beipt). (2)

Уравнение второго порядка — две произвольные постоянные для того, чтобы удовлетворить любым начальным условиям.

Однако, здесь возникает трудность. Вот что говорит по этому поводу Л. И. Мандельштам («Лекции по теории колебаний», стр. 138):

«Рассмотрим последний случай, когда

? = w0, ?1 =?2

При этом решение (2) принимает вид:

х = Ае– ?t. (3)

Если мы захотим приспособить такое решение к начальным условиям, то нам не хватит одной постоянной интегрирования. Нетрудно, однако, показать, что в этом специальном случае наряду с решением вида (3) имеет решение вида tе– ?t и общее решение таково:

х = Ае– ?t + Btе– ?t. (4)

В нем опять имеются две независимые константы, и его можно приспособить к любым начальным условиям.

Случай, когда ?1 и ?2 почти равны друг другу, и случай, когда они в точности равны, физически близки друг другу. Замечу, что этот случай важен в теории измерительных приборов. Часто требуется, чтобы измерительный прибор как можно быстрее приходил в положение равновесия. Оказывается, это требование выполняется как раз тогда, когда характеристическое уравнение имеет равные корни.»

В самом деле, физически ситуацию ?1 и ?2 от ситуации ?1 ~= ?2 мы отличить не можем из-за конечной точности измерения любых величин и, в частности, коэффициентов уравнения (1) (в какой-то момент ? станет неотличимым от w0, не будучи равным ему в точности), в то время как решения (2) и (4) уравнения (1), отвечающие этим различным ситуациям, различаются весьма существенно. Перепишем решение (4) в виде, схожем с видом решения (2):

x(t) = e– ?t(A + Bt). (5)

Таким образом видно, что асимптотики решений (2) и (5) существенно различны: в первом случае затухающая экспонента, умноженная на осциллирующие (и, стало быть, ограниченные) синус и косинус, а во втором — такая же экспонента (? уже неотличимо), умноженная на растущую линейную функцию, и никаких осцилляций. Получается как бы парадокс: физически неразличимые ситуации можно различить…

Разрешение этого «парадокса» на следующей странице.

Возникновение данного «парадокса» заключается в неправильном понимании того, что именно должно быть неразличимо при ?1 ~= ?2. На деле физическое требование неразличимости ситуаций ?1 ~= ?2 и ?1 = ?2 заключается в том, что при ? —> w0 переходить друг в друга должны не общие решения (2) и (5) уравнения (1), а решения физической задачи, каковой является задача Коши о колебаниях осциллятора с данными начальными условиями х0 и х•0. А последнее свойство как раз имеет место. Убедимся в этом.

При ? = w0 решение задачи Коши имеет вид:

(6)

При ? —> w0 общее решение должно переходить именно в него.

В общем случае ? /= w0 решение задачи Коши имеет вид:

(7)

При ? —> w0 частота осцилляций р —> 0, дробь > sin pt/p — > t, cos pt —> 1, и решение (7) переходит в (6). Видно, что хотя формально осцилляции (т. е. члены с синусом и косинусом) в решении (7) сохраняются всегда, но частота их (именно, р) становится столь малой, что на не слишком больших временах (много меньших, чем период колебаний ? = 2?/p >>1) они незаметны. Т. е. отличие ? от w0о можно заметить лишь через очень большое время, и тем большее, чем меньше эта разность, что физически разумно.

  • Читать дальше
  • 1
  • ...
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: