Шрифт:
Таким образом, лампа для освещения рассады совсем не обязательно должна имитировать солнечный свет. Желательно использовать более экономичные лампы, спектр излучения которых обогащен красным и синим светом.
5.3.2. Энергетические характеристики некоторых ламп, применяемых для освещения растений
Первая характеристика любой лампы — это количество потребляемой электроэнергии, т. е. мощность лампы, выражаемая в ваттах (Вт). При выборе лампы для освещения рассады важно оценить, насколько эффективно расходуется потребляемая энергия, т. е. какая ее часть переходит в свет, полезный для фотосинтеза. Для начала надо узнать, какая часть электроэнергии переходит в излучение в видимой области.
При оценке эффективности лампы, прежде всего надо узнать, какая часть потребляемой электроэнергии превращается в видимый свет.
Обычно учитывается не все видимое излучение (380-780 нм), а излучение в диапазоне длин волн от 400 нм до 700 нм. Область 400-700 нм называется областью ФАР (фотосинтетически активная радиация). Излучение в области ФАР, как и потребляемая лампой электроэнергия, измеряется в ваттах.
Доля потребляемой электроэнергии, которая переходит в видимый свет (в области ФАР), у разных ламп отличается в несколько раз, но даже у самых экономичных она составляет не более 30% (табл. 22, 4 столбец). Остальное — тепловые потери и инфракрасное излучение ламп.
* ФАР — видимый свет в области от 400 до 700 нм (фотосинтетически активная радиация).
** КПД — коэффициент полезного действия
*** КПД оптики — доля общего светового потока, направленная на растения. Зависит от конструкции лампы, светильника и отражателя.
По этой характеристике меньше всего для освещения рассады подходят обычные лампочки накаливания с вольфрамовой нитью. Видимый свет составляет незначительную часть их спектра, а остальное — это инфракрасное, т. е. тепловое излучение (рис.5.3). В лампочках накаливания львиная доля потребляемой электроэнергии расходуется на ненужное, более того, на вредное для растений инфракрасное излучение. Особенно неблагоприятное физиологическое воздействие на рассаду имеет излучение с длинами волн 700-1000 нм. Эти лучи вызывают вытягивание стебля.
Рис. 5.3. Спектр излучения обычной лампочки накаливания с вольфрамовой нитью (показан относительно кривой чувствительности глаза человека): максимум энергии излучается вне области ФАР (область ФАР выделена пунктиром)
Значительно выше доля электроэнергии, переходящей в видимый свет в области ФАР, у разрядных ламп. Для освещения растений применяют разрядные лампы различного типа. В рассадных теплицах часто применяют ртутные лампы высокого давления ДРЛФ 250 и ДРЛФ 400 (раздел 3.1.9).Эти лампы имеют самый низкий КПД ФАР из всех разрядных ламп (10-12%).
В квартирах обычно используют лампы холодного свечения (люминесцентные). Трубчатые люминесцентные лампы мощностью 40-80 Вт имеют КПД ФАР 20-22%. Кроме трубчатых промышленность производит компактные люминесцентные лампы, напоминающие по своим габаритам обычную лампочку накаливания. Компактные отечественные лампы выпускаются мощностью 12 и 16 Вт. Они имеют КПД ФАР в 1,5 раза ниже, чем указанный в таблице для трубчатых люминесцентных ламп.
Наиболее экономичными являются натриевые лампы высокого давления: 25-30% потребляемой ими электроэнергии переходит в видимый свет в области ФАР.
Доля потребляемой энергии, которая переходит в видимый свет, зависит не только от типа ламп, но и от их мощности. Чем слабее лампа, тем сильнее «непроизводительные потери» и тем меньшая часть электроэнергии переходит в видимый свет. Некоторые технические характеристики отечественных трубчатых люминесцентных ламп приведены в таблице 23.
* Люмен — единица световой мощности, основанная на чувствительности глаза человека.
** Указан световой поток новых ламп. Со временем происходит снижение светового потока: на 20% за период, составляющий 40% срока, на 30% за 70% срока и на 40% к концу срока службы.
5.3.3. Спектральные характеристики некоторых ламп, применяемых для освещения рассады
Важнейшей характеристикой лампы является спектр излучаемого света.
Для оценки пригодности и эффективности данной лампы для освещения рассады, необходимо знать, как излучаемый лампой свет распределяется в видимой части спектра.
В ртутных лампах высокого давления и во всех люминесцентных лампах источником свечения являются пары ртути. Сами по себе пары ртути дают большое количество ультрафиолета и очень мало видимого (темно–синего) света. Чтобы получить видимый свет, в лампы вводят различные вещества (люминофоры), которые преобразуют невидимое ультрафиолетовое излучение в видимый свет. Например, сурьма преобразует ультрафиолет в голубой свет, марганец — в желтый. В зависимости от состава люминофора достигается та или иная цветность лампы, тот или иной спектр излучаемого видимого света.