Шрифт:
В данном разделе приводится описание статистических процедур, которые вы провели для проверки гипотез. Например, в рамках исследования вам необходимо изучить, есть ли связь между двумя количественными переменными (количеством времени, проведенном в Интернете, и доходом), вы описываете результаты корреляционного анализа. Следует указать, какие были шкалы, какой коэффициент корреляции был применен и почему, связаны ли переменные на статистически значимом уровне. Также следует указать, чему равен коэффициент корреляции и каково направление связи. Подробнее о каждом из видов анализов будет написано далее. Суть в том, чтобы подробно описать получившийся результат.
Также следует отметить, что не стоит делать расчетов, которые не направлены на решения исследовательских задач. Например, если задача состоит в поиске связи, то необходимо подобрать метод для этой задачи с учетом того, какие шкалы используют, является ли распределение нормальным. Очень часто я сталкиваюсь с высказываниями вроде «Я не знаю всех этих сложных методов, поэтому вероятно, что мою статью не примут, ведь там присутствует только одномерный анализ» и т. п. Мы бы не рекомендовали делить анализы данных на сложные / простые. Следует руководствоваться принципом «бритвы Оккама»: выбирать наиболее простой способ, но главное – подходящий для решения вашей исследовательской задачи. Поэтому не стоит стесняться частотного анализа или таблиц сопряженности – иногда это все, что нужно, чтобы сделать исследование завершенным. Поэтому при формулировке задач так важно понимать, какие из них под силу решить статистическими методами, а какие – нет. И, конечно, вышесказанное не означает, что нужно пользоваться только одномерными или двумерными методами анализа данных, в идеале освоить разные методы, для того чтобы иметь возможность ставить задачи разного порядка. Тогда придет понимание, что анализ данных – это несложно, это лишь инструмент для решения исследовательских задач.
Статистические расчеты могут быть представлены в виде таблиц, графиков, диаграмм в зависимости от выбранного метода визуализации данных [30] .
По каждому из анализов необходимо описать полученные закономерности, например процентные соотношения или связи между переменными в зависимости от выбранного метода анализа данных.
1.6. Обсуждение результатов / выводы / заключение
В данном разделе необходимо сформулировать общие выводы по всей научной работе, не повторяя предыдущий текст, а именно ответить на основной вопрос, поставленный в вашей работе. Если исследование называется «Социокультурные и социоструктурные факторы, влияющие на установки россиян по отношению к иммигрантам», то необходимо ответить на вопросы: 1) каковы установки россиян по отношению к иммигрантам согласно вашему исследованию, 2) какие факторы из числа социокультурных и социоструктурных оказывают влияние на установки по отношению к иммигрантам в России (согласно полученным эмпирическим результатам).
30
Существует много литературы о том, как представить данные в различных программах, см., например: Мастицкий С. Э., Шитиков В. К. Статистический анализ и визуализация данных с помощью R. – М.: ДМКПресс, 2015. С. 496: цв. ил. ISBN 978-5-97060-301-7; Бурнаева Э. Г. Обработка и представление данных в MS Excel: Учебное пособие / Э. Г. Бурнаева, С. Н. Леора. Электрон. дан. – СПб.: Лань, 2018. С. 156.
Попробуйте проинтерпретировать полученные результаты по каждой гипотезе (ваши результаты повторяют чей-то результат, который был получен ранее? Или противоречат им?). Сошлитесь на авторов, которые получали схожие / не схожие закономерности по похожим вопросам, приведите обсуждение (почему, например, могли получиться различные тенденции с предыдущими исследованиями: различные методологии? Различный контекст проведения исследования, например, в условиях экономического кризиса и т. п.). Что лежит в основе механизма закономерностей, которые вы получили? Постарайтесь связать выводы, полученные вами, с той теоретической рамкой, которую вы выбрали в своем исследовании. Необходимо «подняться» над эмпирикой и произвести рефлексию, осмысление ваших результатов.
Можно также пояснить, что удалось сделать, а что осталось за рамками работы, и указать возможные направления дальнейшей работы.
1.7. Типичные ошибки
При написании научной работы
• Бессодержательная тема / слишком широкая тема (например, социальные взаимодействия в Российском обществе).
• Тема, содержащая ненаучные термины (например, ментальные ценности в социологических исследованиях).
• Несоответствие темы и содержания.
• Не раскрыта тема.
• Утверждение, что нет объясняющей теории / нет литературы по вашей теме (в 99 % случаев литература есть, вы просто ее пока не нашли).
• Частые отклонения от главной темы при написании работы.
• Нечеткая структура, отсутствие логики, несформулированная проблема исследования.
• Описательный характер всего текста без содержательных выводов (столько-то процентов выбрали этот вариант ответа, столько-то – этот).
• Несвязанность частей текста между собой.
• Недостаточное описание процесса анализа данных (иногда возникает иллюзия, что все, что вы описываете подробно, и так будет понятно, в результате чего возникает что-то похожее на сказку про Колобка, когда вместо всей истории вы пишете, что жил Колобок и лиса его съела. Конец. Необходимо подробно и основательно описывать все этапы анализа данных, это применимо и к остальным частям научной работы, все надо описывать максимально понятно).
Конец ознакомительного фрагмента.