Шрифт:
Очевидно, что этим признанием мы обязаны не Никомаху, он лишь повторял то, что было зафиксировано традицией, восходящей к пифагорейским кругам, пусть даже и традицией искаженной. Как показал Й. Растед, в основе легенды об открытии в кузнице лежал рассказ об акустических экспериментах Гиппаса с сосудами и медными дисками (ср. Aristox. fr. 90), которые были названы ??????? f) ??????. [689] На каком-то этапе место Гиппаса занял Пифагор, [690] а вместо слова ?????? в результате ошибки появилась ????? (молоток), что и дало повод зарождению рассказа о кузнице. Сравнение рукописных вариантов «Гармоники» Птолемея (Harm., р. 17.16 f) с комментарием Порфирия (In Ptol. Harm, com., p. 121.10 f) доказывает, что у Птолемея среди серии других экспериментов упоминались и опыты со ??????? f) ??????, а легенда о кузнице отсутствует. Это и неудивительно: Птолемей, в отличие от Никомаха, хорошо разбирался в акустике и лично проверял все эксперименты, которые проводили его предшественники. Таким образом, есть все основания полагать, что и легенда, встречающаяся у Никомаха, отражает, хотя и в искаженной форме, реальную научную практику.
689
Raasted J. A Neglected Version of the Anecdote about Pythagoras's Hammer Experiments, Cahiers d'Institute du Moyen Age grec et latin 31a (1979) 1-9. Растед полагает, что ?????? обозначала первоначально «сосуд».
690
Теон Смирнский упоминает в связи с Пифагором опыты с ?????? ? ??????? (Exp., p. 57.7).
Впрочем, у нас нет никакой необходимости ограничиваться лишь Никомахсм. Почти все античные авторы, повествующие об открытии Пифагора, единодушны в двух пунктах: открытие это было сделано путем эксперимента и опиралось на математическую теорию пропорций. Должен ли нас удивлять тот факт, что более поздние из этих источников дают более подробную информацию? Не являются ли такие авторы, как Прокл и Симпликий, нашими важнейшими источниками по раннегреческой науке? И если у Птолемея мы находим детальные описания его оптических и акустических опытов, означает ли скудость или даже отсутствие таких описаний для ранней эпохи, что и самих экспериментов в это время не было или почти не было? [691] Так же, как наличие евклидовых «Начал» подразумевает, что дедуктивный метод стал практиковаться в математике задолго до Евклида, так и евклидово «Разделение канона», подытожившее предшествующую науку о музыке, в первую очередь пифагорейскую, [692] неизбежно ведет к выводу о длительной практике экспериментирования, предшествующей этому трактату.
691
См. замечания по этому поводу: Burnet. Experiment, 253 f; Heidel. Science, 78 f.
692
Pitagorici III, 395; Mathiesen Th. I. An Annotated Translation of Euclid's 'Division of a Monochord', JMT 19 (1975) 236 ff; Barker A. D. Methods and Aims in the Euclidean Sectio canonis, JHS 101 (1981) 1-16. Барбера еще более подчеркивает пифагореизм трактата, но датирует его временем Никомаха, что представляется неубедительным: Barbera A. Placing Sectio canonis in Historical and Philosophical Context, JHS 104 (1984) 157-161. Ср. аргументы Флоры Левин в пользу как евклидова авторства трактата (в частности, его введения, где дается физическая теория звука), так и его принадлежности к пифагорейской традиции: Levin F. Unity in Euclid's 'Sectio Canonis', Hermes 118 (1990) 430-443.
Первое, очень краткое упоминание об открытии Пифагора содержится у Ксенократа. Его слова цитирует некий Гераклид (вряд ли Гераклид Понтийский), которого в свою очередь цитирует Пор-фирий. «Пифагор, — говорит Ксенократ, — открыл, что и музыкальные интервалы возникают не без участия числа, ибо они есть соотношение одного количества с другим. Затем он исследовал, при каких обстоятельствах интервалы бывают созвучными и несозвучными и как вообще возникает все гармоническое и негармоническое» (fr. 9). [693] Хотя в данном фрагменте не говорится, как Пифагор пришел к своему открытию и с помощью каких методов он исследовал музыкальные интервалы, [694] ничто не противоречит предположению, что о его экспериментах мог упоминать уже сам Ксенократ. [695]
693
После длительной дискуссии вокруг этого фрагмента (см.: Heinze R. Xenokrates. Leipzig 1892, 5 ff; Schonberger P. L. Studien zum I. Buch der Harmonik des Claudios Ptolemaeus. Prog. Metten 1914, 113 ff; During I. Ptolemaios und Porphyrios uber die Musik. Goteborg 1934, 154 ff; Guthrie I, 222 f; Philip, 125; Burkert, 64, 380 ff; Levin F. ????? and ????? in the Harmonika of Klaudios Ptolemaios, Hermes 108 [1986] 207 f; Barker. Writings, 9, 30, ср. 235 п. 113) его принадлежность Ксенократу можно считать доказанной. Буркерт предпочитает относить к Ксенократу только первое предложение данного пассажа, но оснований для этого он не приводит, и такое членение представляется искусственным.
694
Какие именно интервалы имел в виду Ксенократ, уточняет фрагмент Евдема, в котором он, говоря о пифагорейцах, отмечает: «а также и отношения трех созвучий — кварты, квинты и октавы — лежат в пределах первых девяти чисел. Ведь сумма 2, 3 и 4 равна 9» (fr. 142).
695
Levin. Harmonika, 208.
Первое развернутое описание эксперимента Пифагора мы находим в трактате Гауденция (III в. н.э.). Согласно Гауденцию, Пифагор сделал свое открытие с помощью монохорда, т. е. инструмента с одной струной, натянутой на линейку с размеченными делениями, общим числом 12. Заставив звучать струну, а затем ее половину, он обнаружил, что они звучат созвучно, причем получающийся интервал является октавой. Затем он заставил звучать всю струну и 3/4 ее, получив таким образом кварту. Наконец, то же самое было проделано с целой струной и ее 2/3, при этом была получена квинта (Intr. harm. 11, p. 341.12-25).
Гауденций был, разумеется, не первым, кто связывал Пифагора с монохордом: веком раньше его Диоген Лаэрций кратко отмечал, что Пифагор открыл разметку монохорда (VIII, 12), более ранние [696] авторы также упоминают его в связи с монохордом или каноном. Традиция эта восходит как минимум к эпохе эллинизма, отсутствие же прямых эллинистических свидетельств может объясняться тем, что мы не располагаем вообще ни одним музыкальным трактатом этого времени. Не исключено, конечно, что история с монохордом была приписана Пифагору как первооткрывателю математической структуры гармонических интервалов именно в постклассический период, тем более что сам термин ????? впервые встречается в трактате Евклида Sectio canonist [697] Однако на фоне других акустических экспериментов, проводившихся младшими современниками Пифагора, например Ласом из Гермионы или Гиппасом, такое предположение кажется маловероятным. Если Пифагор действительно открыл числовое выражение трех основных интервалов, — а сомневаться в этом как будто нет оснований — то естественней всего полагать, что он сделал это с помощью монохорда. [698] В этом же направлении ведет нас и сама терминология основных музыкальных интервалов, происходящая из геометрического разделения струны. [699]
696
Птолемаида из Кирены (ранее I в. н.э.) ар. Porph. In Ptol. harm. comm. 22. 22; Адраст (I в. н.э.) ap. Theon Sm. Exp., p. 56.10, 57.1-2; Nicom. Intr. harm. VI, p. 243, VII, p. 248.
697
Ясно, впрочем, что за самим трактатом стоит долгая традиция исследований. Баркер датирует изобретение канона IV в. (Barker. Writings, 497 ?. 14).
698
Wantzloeben S. Das Monochord als Instrument und als System. Halle 1911, 4, 11; Burnet, 106; Delatte. Vie, 172; Heath. Mathematics I, 46; Heidel. Science, 182 f; Guthrie I, 222 f; Marrou. Op.cit, 272; Barbera. Persistence, 88 f; van der Waerden, 371 f; Levin. Harmonika, 208; Die Musik des Altertums, ?. Riethmuller, F. Zaminer, Hrsg. Berlin 1988, 182 ff.
699
Szabo. Beginnings, 103 ff, 137 ff; Barbera. Persistence, 92 ff; Riethmuller, Zaminer. Op.cit, 182. Ломан, показавший произвольность многих построений Сабо в области музыкальной теории, тем не менее не отрицает самой связи между теорией пропорций и гармоникой (Lohmann J. Musike und Logos. Stuttgart 1970, 93 f).
Часто высказывается мнение, что еще задолго до Пифагора числовые соотношения основных интервалов должны были эмпирически быть известны мастерам, изготовлявшим музыкальные инструменты. [700] Перестает ли в таком случае открытие Пифагора быть научным открытием? Обессмысливаются ли тем самым акустические опыты его последователей?
Греки в самом деле любили выдумывать ?????? ??????? даже для самых обычных вещей. Но в данном случае мы не можем уйти от того факта, что открытие Пифагора произвело неизгладимое впечатление как на него самого (что выразилось в создании доктрины о небесной гармонии), так и на его учеников и современников. Уже в той настойчивости, с которой Гераклит говорит о «невидимой гармонии», можно видеть отзвуки этого открытия. [701] Пропорции между составляющими человеческого организма ищут Эмпедокл и авторы гиппократовского корпуса. [702] Числа, выражающие гармонические интервалы, составляют известную тетрактиду, засвидетельствованную в акусматической традиции. Наконец, открытие Пифагора стало, по всеобщему мнению, тем стержнем, вокруг которого впоследствии формировалась вся числовая философия пифагореизма с ее пафосом соразмерности и гармонии. «Все познаваемое, конечно же, имеет число, — писал позже Филолай. — Ведь без него нам было бы невозможно что-либо познать или помыслить» (44 В 4). «Если бы мы исключили число из человеческой природы, то никогда не стали бы разумными», — вторил ему автор «Послезакония» (997с). Резонно ли полагать, что камня, от которого разошлось так много кругов, в действительности не было? В какой бы форме ни были известны до Пифагора эти числовые соотношения, научным фактом и элементом научной теории они стали благодаря ему. [703]
700
Van der Waerden, 371; Barker. Writings, 256 ?. 43. Из текста одной из псевдо-аристотелевских «Проблем» (XIX,23) как будто следует, что мастера, изготовлявшие авлосы и так называемые треугольные арфы, руководствовались этими соотношениями. Отражает ли это реальную практику, сказать трудно. Сомнения Буркерта на этот счет кажутся убедительными (Burkert, 374 f). Треугольная арфа с различной длиной струн, для которых соотношение, скажем, 2:1 имело бы смысл, появляется в Греции только во второй половине V в. (Maas S., Snyder J. ?. Stringed Instruments of Ancient Greece. New Haven 1989, 156 f). Рассстояние между отверстиями в авлосах, судя по дошедшему до нас материалу, пифагорейским соотношениям не соответствует: Landeis J. G. The Reconstruction of Ancient Greec auloi, World Archeol. 12 (1980) 298-302.
701
22 В 51, 54. См.: Fraenkel. Op.cit, 321; Minar. Logos, 336 f; Snider J. M. The Harmonia of Bow and Lyre in Heraclitus fr. 5, Phronesis 29 (1984) 91-95; Shipton К. M. W. Heraclitus fr. 10: A Musical Interpretation, Phronesis 30 (1985) 115 ff.
702
31 A 78, В 69, 96-98 (особенно показательны ????? ???????? в В 69). Эмпедокл полагал, что кости, например, состоят из двух частей воды, двух земли и четырех огня (2:2:4), нервы из одной части огня, одной земли и двух воды (1:1:2), а в крови все четыре элемента находятся в равной пропорции. См.: Guthrie II, 211 ff. О музыкальных интервалах в медицинской литературе см.: De victu 1,8; Delatte A. Les harmonies dans Pembriologie hippocratique, Melanges P. Thomas. Bruges 1930, 160-171.
703
Ср.: Barker. Writings, 28.
Прежде чем обратиться к оценке последствий открытия Пифагора, остановимся подробней на самом эксперименте. Ведь несмотря на всю простоту опыта с монохордом, перед нами по сути дела первый известный истории науки опыт, давший верное математическое выражение физической закономерности. Что еще более интересно, он соответствует практически всем основным требованиям, предъявляемым к эксперименту. Во-первых, он был специально запланирован для проверки гипотезы (или наблюдения) о том, что гармонические интервалы могут быть выражены с помощью числовых соотношений. Во-вторых, были предприняты соответствующие меры, чтобы изолировать рассматриваемое явление и представить корреляцию между длиной струны и высотой звука в наиболее очевидной форме. В-третьих, эксперимент был легко воспроизводимым и количественно измеряемым. В-четвертых, он был проделан со специально созданным для него прибором — монохордом. Большего, кажется, трудно и ожидать от первой попытки в этом направлении!
Взглянув на данный опыт под другим углом зрения, можно сказать и так: если соответствующие отношения были известны Пифагору до эксперимента, то он, следовательно, не нашел их, а лишь продемонстрировал. Но большинство экспериментов проводят не для того, чтобы найти нечто, а с целью проверки первоначальной гипотезы, которая, естественно, известна и до эксперимента, — за исключением довольно редких случаев, когда в его ходе находят не то, что искали. Ведь эксперимент не есть некий практический способ удовлетворения любопытства, а один из методов превращения знания вненаучного, в том числе и эмпирического, в знание научное, т. е. теоретическое. [704] И если ответ на вопрос, который ставится природе, как правило, предполагается или даже известен заранее, то это лишь подтверждает гипотетико-дедуктивный характер научной процедуры, подразумевающей проверку (в том числе и опытную) тех следствий, которые логическим путем выводятся из проверяемой теории или гипотезы.
704
В математике таким средством является доказательство, и трудно сомневаться в том, что Пифагору еще до того, как он доказал свою теорему, было известно, что треугольник со сторонами 3, 4, 5 — прямоугольный.