Шрифт:
Не торопитесь с таким заключением. Примите во внимание, во-первых, что автомобиль движется по гладкой дороге и преодолевать ему приходится лишь сопротивление воздуха — субстанцию очень легкую и податливую. Дельфину же при движении приходится преодолевать сопротивление воды — вещества почти в тысячу раз более плотного, чем воздух. Во-вторых, современный автомобиль имеет двигатель мощностью около 100 лошадиных сил, а то и побольше. Дельфин же располагает «двигателем» мощностью в одну-единственную дельфинью силу. Так что с учетом всех этих обстоятельств скоростные возможности дельфинов оказываются совершенно рекордными.
Далеко не сразу все ученые согласились с тем, что дельфины вообще могут двигаться с такой скоростью. Конечно, то, что они могут плавать очень быстро, было известно давно, но что значит «очень»? Многие моряки не раз рассказывали о необыкновенной скорости, с которой дельфины легко догоняют и перегоняют быстроходные суда. Но человеческий глаз — не самый совершенный инструмент для измерения скорости, в особенности если события разворачиваются на фоне волн, бегущих по пути или навстречу движущемуся животному. Может быть, все восторги по поводу быстроходности дельфинов преувеличены?
Только специально спланированные измерения могут дать точный ответ. Для этого дельфинов обучают плавать на скорость в особо оборудованной акватории, где трасса проплыва размечена буйками, а фото-, кино- или видеокамеры фиксируют положение плывущего дельфина в каждый момент времени, и можно точно установить, какой отрезок пути с какой скоростью пройден. Чтобы «объяснить» дельфинам, что от них требуется плыть как можно быстрее, придумывали разные способы. Можно поощрять животных только в том случае, если они доплывают до финиша не позже определенного момента, и это отведенное для проплыва время постепенно сокращать, побуждая дельфина двигаться все быстрее и быстрее. Можно варьировать количество поощряющего корма: проплыл быстрее — получи больше рыбы. А одна команда экспериментаторов придумала использовать такой простой и эффективный способ, как научить дельфина плавать вдогонку за «приманкой» — игрушкой на длинном шнуре, который наматывается на барабан лебедки, вращающийся с разной скоростью. Для дельфина такое плавание наперегонки — замечательное развлечение, которому он быстро обучается и с удовольствием участвует в этой игре, а если в конце каждого проплыва его ждет еще и вознаграждение в виде рыбки, то тем лучше. В общем, это примерно то же, что погоня за механическим «зайцем» на собачьих бегах. Если поощрять дельфина только в том случае, когда он приходит к финишу одновременно с «зайцем», то животное быстро соображает, что к чему, и к плаванию наперегонки относится с полной ответственностью, выкладываясь «от души». Именно так и были установлены и строго зафиксированы рекордные показатели дельфиньего плавания. Барабан лебедки вращали все быстрее и быстрее, приманка летела по поверхности воды с огромной скоростью, а дельфин не отставал от нее, раз за разом приходя к финишу вместе с приманкой. Только когда скорость приманки превысила 21–22 узла (узел — это единица скорости, используемая моряками и равная одной морской миле, то есть 1,85 километра час), дельфин сдался. А это и есть примерно 40 километров в час.
Кстати, есть и другой довольно простой способ узнать, какую предельную скорость могут развивать дельфины. Дело в том, что они хорошие прыгуны — часто выпрыгивают из воды на довольно большую высоту. В естественных условиях они делают это, видимо, просто чтобы поразвлечься. А в зрелищных дельфинариях животных специально обучают и тренируют, чтобы они по команде демонстрировали свои замечательно красивые прыжки. Они уверенно прыгают на высоту до пяти метров, иногда и повыше. Но что представляет собой прыжок дельфина? Он ведь не может сильно оттолкнуться от твердой поверхности, как это делает спортсмен-прыгун. Чтобы выпрыгнуть из воды, дельфин должен разогнаться под водой до довольно значительной скорости; тогда он по инерции может вылететь из воды вверх — на тем большую высоту, чем выше скорость. Какова должна быть скорость тела, чтобы оно, преодолевая силу тяжести, взлетело вверх на пять метров? Это задачка из школьного учебника физики. Любопытные могут легко найти там необходимые формулы и сделать расчет сами. Ну а я уж не буду мучить расчетами тех, кто не слишком любопытен, готов принять на веру: чтобы взлететь на пятиметровую высоту, скорость в момент отрыва от воды должна быть равна 10 метрам в секунду, то есть 36 километрам в час. Но это в идеале — если скорость направлена точно вверх и не происходит никаких потерь энергии на преодоление сопротивления воды в момент отрыва. А в реальных условиях и потери есть, и вылетает из воды дельфин не точно вверх, а под некоторым углом, так что нужно накинуть еще несколько километров — получится как раз около 40 километров в час или даже чуть побольше, примерно то же, что дали эксперименты с гонками за «зайцем».
До сих пор не вполне понятно, как удается дельфинам развивать такую скорость. Конечно, обтекаемая торпедообразная форма тела как нельзя лучше приспособлена к движению в плотной водной среде. Но этого мало. Обязательно нужно иметь хороший орган движения, который эффективно превращал бы мускульную энергию дельфина в энергию движения, толкал бы тело вперед. Такой орган (у животного) или механизм (у машины) называют движителем (не путайте с двигателем: например, у автомобиля, корабля, самолета двигатель — это мотор, а движитель — соответственно ведущие колеса, водный или воздушный винт). У дельфина движитель — это его хвостовой плавник, приспособление во многих отношениях замечательное. Горизонтальная гребущая лопасть хвостового плавника расположена на конце хвостового стебля и может поворачиваться вокруг точки крепления. Причем никакого сустава в этой точке нет, потому что в хвостовой лопасти нет костей скелета, но она закреплена на связках так, как будто там есть самый настоящий сустав или ось вращения. Поворачиваясь вокруг этой точки, хвостовая лопасть меняет свой угол относительно набегающего потока воды (его называют углом атаки) так, чтобы при взмахах хвоста вверх-вниз максимально отбрасывать назад струю воды и, отталкиваясь от нее, создавать наибольшее продвижение вперед. Примерно так же действуют ласты аквалангиста. Но именно примерно, а не точно так же. Ласты аквалангиста меняют угол атаки просто потому, что эластичная резиновая лопасть отгибается под напором воды. Дельфин же управляет своим хвостом активно, с помощью мышц и связок. Он всегда может повернуть лопасть под таким углом, чтобы при данной скорости движения этот движитель работал наиболее эффективно.
А сам хвостовой стебель, на котором закреплена лопасть, тоже испытывает сопротивление воды? Практически нет. Стебель сильно сплюснут с боков, поэтому при движениях вверх-вниз он, как нож, разрезает воду, практически не встречая сопротивления. Весь упор приходится на саму лопасть, повернутую под таким углом, чтобы сопротивление воды обратилось в тягу, толкающую тело дельфина вперед.
Своим хвостом-движителем дельфин управляет артистически. Режимы его работы — частота и амплитуда взмахов — всегда выбираются такими, чтобы достичь максимального эффекта при данной скорости движения. Когда дельфин только начинает разгон, хвост его описывает широкие, размашистые движения, помогающие разогнать с места массивное тело. По мере увеличения скорости несущийся навстречу поток воды сделал бы такие движения неэффективными, но характер работы хвоста меняется, его взмахи становятся все более короткими и быстрыми — при любой скорости находится оптимальный режим, дающий наилучшую отдачу.
Но, оказывается, иметь эффективный и послушный в управлении движитель — это лишь полдела. Более полувека назад английский зоолог Грэй попытался подсчитать, какую мощность может и должен тратить дельфин для движения с той скоростью, которую он способен развивать. Сделать такой расчет вполне возможно. С одной стороны, есть хорошо проверенные физические формулы, по которым можно рассчитать, сколько энергии требуется, чтобы тело такой же формы и такого размера, как тело дельфина, преодолевало сопротивление воды с определенной скоростью. С другой стороны, физиологи могут подсчитать энергетические ресурсы организма и оценить, какой энергией реально располагает дельфин, чтобы вложить ее в свой «двигатель». Грэй подсчитал то и другое. Сравнил. И очень удивился. Оказалось, что дельфин вроде бы должен тратить для своего движения в несколько раз большую энергию, чем та, которой он реально может располагать. Этот результат стал известен как «парадокс Грэя».
Конечно, закон сохранения энергии никто не отменял. Дельфин не может брать энергию «ниоткуда». Значит, он обходится тем относительно небольшим ресурсом энергии, который есть в его распоряжении, но расходует его намного экономнее и эффективнее, чем известные механические устройства. Значит, и тут есть у него свой секрет. И что самое интересное — приблизительно даже было известно, где искать этот секрет. И все равно найти его оказалось не очень легко.
А искать надо было вот где. Давно известно, что, когда какое-то тело движется в воде (или в воздухе, или другой среде, но для определенности давайте говорить о воде), обтекание тела водой не всегда происходит равномерно, даже если это тело идеальной обтекаемой формы. При относительно небольшой скорости струи воды плавно расступаются перед телом, обтекают его и так же плавно смыкаются за ним. Но если скорость увеличить, то трение между водой и поверхностью тела нарушит это плавное течение. Струи воды отрываются от поверхности, завиваются в вихри. Эти вихри прочно присасываются к движущемуся телу, держат его, мешают двигаться вперед. Львиная доля всей энергии, затрачиваемой на движение, поглощается этими вихрями и безвозвратно уносится в убегающий назад поток. Поэтому потребность в энергии для движения тела сразу резко возрастает.