Вход/Регистрация
Пространство, время и движение. Величайшие идеи Вселенной
вернуться

Кэрролл Шон

Шрифт:

(A.29)

Приложение Б. Связность и кривизна

Обсуждая геометрию (глава 7), мы рассмотрели все понятия, нужные для понимания концепции геодезических линий и уравнения Эйнштейна, не сказав при этом ни слова о том, как вывести их из какой-то произвольной метрики. Заполним пробелы. Представим себя в четырехмерном пространстве-времени и перейдем с латинских букв на греческие. Впрочем, все формулы будут работать и в обычном пространстве, и при любом количестве измерений.

Когда в главе 8 мы выводили уравнение Эйнштейна, нам потребовался скаляр кривизны Риччи, который можно получить при помощи «обратной метрики». Давайте обсудим, что это такое. Для начала введем чрезвычайно полезный тензор — дельту Кронекера, у которой есть один верхний и один нижний индекс. В четырех измерениях он выглядит следующим образом:

(Б.1)

В матричном представлении дельта Кронекера представляет собой единичную матрицу — аналог единицы в стране матриц: при умножении любой матрицы на единичную мы получаем исходную матрицу.

С учетом этого можно представить обратную метрику как тензор, который нужно умножить на исходную метрику, чтобы получить дельту Кронекера. Метрический тензор gµ? представляет собой симметричный тензор с двумя нижними индексами, а значит, обратная метрика будет симметричным тензором с двумя верхними и соответствовать следующему условию:

gµ?g?? = ?µ?. (Б.2)

Какое прекрасное зрелище! Взгляните на индексы. В формулах с тензорами они бывают двух типов: немые и свободные. Немые индексы всегда встречаются дважды: один раз вверху и один раз внизу, как ? в выражении (Б.2). Сама буква значения не имеет, важно лишь, чтобы она была и в верхней, и в нижней позиции. (Суммировать только по верхним или только по нижним импульсам нельзя.) Свободные индексы, напротив, встречаются только один раз, как µ и ? в выражении (Б.2). Мы можем выбрать любые буквы, но крайне важно, чтобы они были в каждом слагаемом (то есть произведении элементов тензоров). Именно так происходит в выражении (Б.2): верхний индекс µ и нижний индекс ? — свободные индексы, которые есть и в левой, и в правой части. Попытка сложить тензоры с несовпадающими свободными индексами ни к чему хорошему не приведет.

В обычной геометрии Евклида о метриках ничего не говорится. Но это не значит, что их там нет. Например, мы можем сказать, что скалярное произведение двух трехмерных евклидовых векторов равно

. Мы можем записать и саму метрику. В декартовой системе координат она будет выглядеть так:

(Б.3)

Сравнив элементы (трехмерных модификаций) матриц из выражений (Б.1) и (Б.2), получим обратную матрицу, которая будет выглядеть точно так же:

(Б.4)

Именно поэтому можно пройти полный курс геометрии в средней школе, ни разу не услышав слово «метрика». В плоском пространстве и декартовых координатах все элементы метрики, обратной метрики и дельты Кронекера одинаковы.

Однако в общем случае это не так: элементы обратной метрики обычно не совпадают с элементами обычной. Если метрика диагональна, нам повезло (чего не сказать о тех, кому досталась не диагональная): все элементы обратной метрики будут обратны по отношению к элементам обычной. Например, для плоского трехмерного евклидова пространства в сферических координатах метрика равна:

(Б.5)

Обратная метрика в этом случае будет равна:

(Б.6)

В плоском пространстве мы можем, по крайней мере, выбрать декартову систему координат, в которой обычная метрика совпадает с обратной. Но в общем случае такой возможности нет, поэтому метрики важно различать.

Наличие обычной и обратной метрик позволяет нам выполнять две любопытные операции с тензорами: опускание и поднятие индекса. Как можно заметить даже по обозначениям матриц, разница между верхними и нижними индексами принципиальна. Но мы можем опустить верхний индекс, то есть сделать его нижним. Для этого тензор нужно умножить на метрику и просуммировать по этому индексу. Аналогичным образом можно поднять нижний индекс при помощи обратной метрики. Например, если у нас имеется вектор vµ, можно сказать, что:

v? = g??v?. (Б.7)

И если обратная метрика соответствует условию (B.2), сначала опустив, а затем подняв индекс любого тензора, мы гарантированно получим исходный тензор (поскольку суммирование по ??? равносильно полному отсутствию каких-либо действий):

g µ?v? = g µ?g??v ? = ? µ?v ? = v µ. (Б.8)

Именно эти тензорные операции были нужны нам, чтобы определить скалярную кривизну Риччи в главе 8. У тензора Римана обычно один верхний и три нижних индекса, поэтому несложно «свернуть» один из них (просуммировать по нему) и получить тензор Риччи: Rµ? = R?µ??. Но дальше мы получаем тензор с двумя нижними индексами, который уже невозможно свернуть в скаляр. Однако мы можем поднять один из них при помощи обратной матрицы: Rµ? = gµ?R??, после чего приступить к свертке: R = R?? или, что то же самое, R = g??R??. Именно этот скаляр и позволил Эйнштейну найти такой тензор, который может быть пропорционален тензору энергии-импульса без нарушения закона сохранения энергии.

  • Читать дальше
  • 1
  • ...
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: