Вход/Регистрация
ПОИСКИ ИСТИНЫ
вернуться

Мигдал Александр А.

Шрифт:

Первая из них хорошо известна и называется «постоянной тонкой структуры». Подстановка числовых значений дает \alpha = 1/137; \ksi = 5\cdot 1044. Может ли такое большое

число, как \ksi, возникнуть в результате решения каких-нибудь разумных уравнений? Безразмерные числа, которые получаются в физических задачах, обычно имеют порядок нескольких единиц или долей единицы. Поэтому мы вправе ожидать, что величина \ksi войдет в задачу в такой форме, чтобы в результате получилось число порядка единицы. Пока мы применяли здравый смысл. Теперь нужно сделать небольшой интуитивный логический скачок.

Правдоподобно, что в теорию войдет натуральный логарифм \ksi (ln(\ksi) ~100) в комбинации \alpha ln(\ksi) ~ 1. В этом соотношении уже нет больших чисел. Знание такого соотношения облегчает поиски решения.

Поправки к электродинамике в сильном поле

Это более сложная задача, которая даст некоторое представление о важном методе современной физики - графиках Фейнмана. Метод графиков или диаграмм совершил революцию в теоретических расчетах. Суть его состоит в том, что явления изображаются в виде рисунков, которые расшифровываются в конце работы. Даже без расшифровки, только как иллюстрация процессов, эти графики многое разъясняют. Например, такой рисунок означает рождение и уничтожение пары электрон -

позитрон фотоном, если под пунктиром понимать квант, а под линиями с разными стрелками - электрон и позитрон. Точки на графике означают акт взаимодействия кванта с электроном. Каждый акт вносит множитель е, а весь график показывает, как изменяется закон распространения электромагнитного поля из-за временного рождения пары электрон - позитрон.

Вакуум представляет собой сложную среду, в которой могут виртуально - на время - рождаться пары частиц - античастиц. Особенно ясно это станет после прочтения следующей главы. Поэтому нет никаких оснований считать, что уравнения Максвелла останутся линейными для сколь угодно сильных полей. Оценим порядок величины поправок к этим уравнениям.

Поправку к уравнениям Максвелла лучше всего

нивать по изменению безразмерной величины - диэлектрической постоянной, скажем, в электрическом поле.

Отчего изменяется диэлектрическая постоянная, определяющая скорость распространения света в вакууме в присутствии внешнего поля? Ведь внешнее поле на свет не действует. Механизм состоит в том, что свет на время рождает электрон-позитронную пару, а эти частицы уже взаимодействуют с внешним полем.

На рисунке процесс выглядит так:

Этот рисунок показывает, как изменяется во внешнем поле закон распространения фотона.

Квант на время рождает пару, а электрон и позитрон взаимодействуют с внешним полем (волнистая линия). Каждое включение внешнего поля вносит множитель еЕ, где Е - напряженность внешнего поля.

Теперь нетрудно составить безразмерную комбинацию, дающую поправку к диэлектрической постоянной. Сначала составим безразмерную комбинацию, содержащую поле Е. Так как еЕ имеет размерность энергии, деленной на длину, а величина h/mc - размерность длины, то выражение

безразмерно.

Теперь, глядя на рисунок, нетрудно догадаться, как должна выглядеть поправка к диэлектрической постоянной:

где f - произвольная функция. Заряд е входит в первый множитель квадратично, так как предварительно была рождена пара, а поле Е входит в функцию в безразмерной комбинации \beta. При сравнительно малых полях функцию f можно разложить в ряд. Он начнется с члена ~Е2, ведь Е - вектор, а в ответ может входить

только скалярная величина, то есть только квадрат вектора Е.

Итак,

КВАНТОВАЯ ТЕОРИЯ ЧАСТИЦ И ПОЛЕЙ

Декарт научил нас не только сомневаться, но и решать уравнения.

Ж- Фурье

Мы уже много раз поминали всуе знак h - постоянную Планка. Пора приступить к делу и показать не на словах, а на формулах, как эта величина участвует в квантовых явлениях. Одновременно это послужит лучшему пониманию того, что представляет собой качественный анализ и как он работает. Мы получим самые важные соотношения квантовой механики, пользуясь только качественными соображениями, отбрасывая несущественные трудности. Мы найдем уровни энергии атома, вращающегося тела, осциллятора и обсудим следствия применения квантовой механики к электромагнитному и другим полям.

Квантование атома

Согласно квантовой механике энергия электрона в атоме может принимать только дискретные значения.

Возможные значения энергии электрона в поле ядра с зарядом Z (для водорода Z = 1) даются выражением

Разности значений Еп для двух разных п (п = 1, 2, 3…) определяют с большой точностью возможные частоты наблюдаемых на опыте спектральных линий. Эта формула - результат точного решения уравнения Шрё-дингера для волновой функции, описывающей движение электрона. Посмотрим, к чему приводит качественный анализ.

  • Читать дальше
  • 1
  • ...
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: