Вход/Регистрация
ПОИСКИ ИСТИНЫ
вернуться

Мигдал Александр А.

Шрифт:

Проекция момента есть целое число, умноженное на h. Максимальное возможное значение проекции полу-

чается, когда полное вращение происходит по оси г. Тогда Mz = M = nmh. Мы получили, что и полный момент квантовой системы есть целое число, умноженное на h.

Будем измерять момент и его проекцию в единицах h. Мы видим, что проекция момента принимает все возможные целые значения от -M/h до M/h. Для момента M/h = 1, Mz /h = 1,0,- 1.

Есть частицы, которые благодаря внутреннему движению имеют полуцелый спин (момент, деленный на h); например, спин электрона и протона равен 1/2. Неудивительно, что для описания внутреннего движения частиц наша простая схема не годится. Но наш результат мало изменится, если в полном моменте участвуют частицы со спином 1/2, как в атоме водорода, где есть только один электрон, спин которого не скомпенсирован другими. Полный момент электрона и его проекция принимают не целые значения, а полуцелые. Так, для основного состояния спин электрона в атоме водорода равен 1/2, а проекции: 1/2, -1/2.

Квантовый осциллятор

Для применения квантовой механики несущественно, как реализован осциллятор - представляет ли он груз, колеблющийся на пружине, или колебательный контур.

Обозначим через q «обобщенную» координату осциллятора - это может быть величина смещения груза из положения равновесия или заряд на обкладках конденсатора в случае колебательного контура. Запишем энергию осциллятора в виде суммы кинетической и потенциальной энепгии:

Величина \beta - «масса», а величина \gamma- «жесткость» осциллятора. Можно представить, что осциллятор - это некая «частица» с массой р, которая колеблется на пружине с жесткостью у. Введем длину волны \lambda волнового процесса, связанного с нашей «частицей»,

В знаменателе, как и в случае электрона, стоит произведение «массы» на «скорость частицы». Поскольку «частица» движется в области от -q до q, то для того,

чтобы образовалась стоячая волна, на «длине» 2q должно укладываться целое число полуволн: 2q/(\lavbda/2) =n +1; n = 0,1,2,3. Сначала найдем скорость

Наинизшее значение п равно нулю - на длине 2q укладывается половина длины волны - максимум посередине и нули на краях. В этом состоянии неопределенность импульса \del p ~p~ \beta q'~h/q , в согласии с соотношением неопределенности.

Подставляя выражение для скорости в кинетическую энергию, получим:

А для полной энергии получим:

Значение q, дающее наименьшую энергию, получится, если приравнять кинетическую и потенциальную энергии:

Подставляя в выражение для энергии, найдем:

Действительно, величина sqrt(\gamma/\beta)=\omega представляет собой частоту колебаний классического осциллятора. При точном расчете для энергии получается выражение:

Таким образом, мы ошиблись только в численном множителе (\pi/2 вместо 1) при n, а также в численном значении энергии наинизшего состояния, когда n =0 = 0 (\pi h \omega/2 вместо h \omega/2). Все остальное получилось правильно! Теперь, когда результат получен, следует задуматься над тем, что мы использовали для его получения и что вытекает из полученных нами выражений для энергии осциллятора и для величины q2.

Прежде всего мы применили к нашему осциллятору, не интересуясь его устройством, принципы квантовой механики, установленные первоначально для электронов. Конечно, естественно ожидать, что общие принципы должны быть такими же и для других частиц с массой, отличающейся от массы электрона. Такое обобщение с большой точностью подтвердилось опытом. Но почему эти же принципы приложимы и к колебательному контуру, где роль «координаты» играет заряд на обкладках конденсатора? Здесь мы использовали предположение, которое много раз применялось в теоретической физике XX века. Если две системы имеют энергию, одинаково зависящую от координат и скоростей, то все свойства таких систем совершенно одинаковы, какой бы смысл ни имели «координаты» и «скорости».

Не было ни одного примера, где бы это предположение противоречило опыту. Поэтому мы вправе считать, что решили задачу о применении квантовой механики сразу для всех возможных осцилляторов.

Что означают полученные результаты? Как они переходят в формулы классической механики? Прежде всего мы получили, что энергия изменяется не непрерывно, а порциями величины h \omega. Правда, величина h очень мала (в системе CGS h=10-27 эрг-с), и для обычных макроскопических осцилляторов эта скачкообразность практически ненаблюдаема. Правильность выражения для энергии осциллятора проверена с большой точностью для многих видов осцилляторов.

Но мы получили еще одно важное свойство квантового осциллятора. Когда энергия минимальна, классический осциллятор находится в покое в положении равновесия, между тем как квантовый в наинизшем состоянии при п = 0 совершает колебания - «нулевые колебания». Кинетическая и потенциальная энергии этих колебаний порядка h \omega. Среднее значение координаты осциллятора равно нулю, а среднее значение квадрата координаты дается приведенной выше формулой. Это замечательное свойство квантовых осцилляторов хорошо проверено на опыте и чрезвычайно важно для современной физики.

Если рассмотреть звуковые колебания твердого тела как набор квантовых осцилляторов, то мы получим, что прн абсолютном нуле температуры атомы твердого тела не неподвижны, а совершают нулевые колебания. Это подтвердили опыты по рассеянию света при низких температурах! Если же теперь мы рассмотрим электромагнитные волны как набор осцилляторов в пустом пространстве, то придем к заключению, что в пустоте, даже когда в ней нет ни частиц, ни квантов, должны происходить «нулевые колебания» электромагнитного поля. И эти колебания были также обнаружены на опыте! Но этот вопрос требует более подробного обсуждения.

  • Читать дальше
  • 1
  • ...
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: