Вход/Регистрация
ПОИСКИ ИСТИНЫ
вернуться

Мигдал Александр А.

Шрифт:

Квантование поля

Что же такое квант? Теперь мы достаточно подготовлены, чтобы ответить на этот вопрос. Мы ввели без объяснения несколько терминов: квантование; волновой процесс, связанный с частицей; квантовый осциллятор… Начали действовать, не очень их понимая, и тем не менее знаем теперь, как зависит энергия уровней атома водорода от квантового числа п; узнали, что квантовый осциллятор в наинизшем энергетическом состоянии колеблется, и даже стали применять результаты квантования осциллятора к такому объекту, как колебания электромагнитного поля в пустоте. А потом неожиданно обнаружили, что начали понимать! Это пример того, как возникает понимание в процессе работы. Ведь если бы мы попытались добиться полного понимания до того, как начали наши простые вычисления, ничего бы не получилось.

Но что же такое квант? Пусть имеются два металлических экрана, расположенных параллельно друг другу. Тогда между ними можно возбудить стоячую электромагнитную волну. Как это делается? Вы знаете, что от антенны радиопередатчика бегут электромагнитные волны, которые, попадая на антенну приемника, превращаются в конечном счете в звук в репродукторе или в изображение на экране телевизора. Представим себе, что такая волна попала в пространство между металлическими экранами и распространяется перпендикулярно им. Если между экранами укладывается целое число полуволн, то возникает стоячая волна. Такая волна возникает и в струне. Если вы дернете закрепленную струну, по ней побегут волны, но после отражения от места закрепления установится стоячая волна или несколько стоячих волн разной длины.

Допустим, мы возбуждаем основной тон электромагнитной волны между экранами. Тогда в средней точке амплитуды напряженности электрического и магнитного полей будут максимальны, и поля в этой точке будут периодически колебаться. Но если какая-то величина периодически колеблется, это означает, что мы имеем дело с осциллятором, надо только выбрать подходящую обобщенную координату. Для нашего осциллятора можно считать координатой напряженность электрического поля в средней точке, и роль скорости при этом будет играть магнитное поле, величина которого пропорциональна скорости изменения электрического поля. Вспомните пример колебательного контура, где потенциальная энергия осциллятора была пропорциональна квадрату заряда конденсатора, то есть квадрату электрического поля, а кинетическая энергия - квадрату магнитного поля в катушке.

Ясно, что к этому осциллятору применимы те же принципы квантования, что и к любому другому. А раз так, то энергия нашей стоячей волны может изменяться порциями h \omega.

Если расстояние между экранами l, то для основного тона имеем:

Ведь длина волны связана с периодом Т соотношением \lambda = сТ, а период связан с частотой со по формуле Т = 2\pi/\omega.

Если волна находится в состоянии с п = 0 (наинизшее состояние), то говорят, что между экранами нет квантов. Если же волна перешла в состояние с n = 1, то говорят, что появился один квант с длиной волны\lambda = 21.

Аналогичный результат можно получить и для любого обертона, когда на расстоянии / укладывается m полуволн. Если nm-номер возбужденного состояния га-той волны, то говорят, что имеется nm квантов с длиной волны \lambdaт = 21/т. Таким образом, номер обертона, определяющего длину волны, задает сорт квантов (квант сданной длиной волны), а номер возбуждения nm дает число квантов данного типа. Обычно принято характеризовать кванты не длиной волны, а величиной, которая называется «волновым вектором».

Эта величина просто связана с длиной волны: k=2\pi/\lambda(\omega=ck).

Рассмотрим теперь бегущую волну. В этом случае тоже происходят периодические колебания, и энергия для каждого волнового вектора к имеет вид, полагающийся для осциллятора. Энергия волны опять определяется формулой E_n=(n+1/2)h \omega и изменяется порциями величины h \omega, но в отличие от стоячей волны бегущая обладает количеством движения, что видно из того, что она при поглощении крылышками радиометра дает им импульс и заставляет вращаться. Поэтому, когда номер возбуждения бегущей волны с волновым вектором к увеличивается на единицу, это означает появление кванта с энергией \varepsilon = h \omega и импульсом - количеством движения- р = h \omega/c. Последнее соотношение представляет собой уже известную нам дебройлевскую связь импульса с длиной волны.

Таким образом, для бегущей волны кванты света можно считать дебройлевскими частицами, с которыми связан волновой процесс, тогда как у кванта стоячей волны средний импульс равен нулю.

Разумеется, нам не удалось добиться полного понимания, но все-таки на вопрос: что же такое световой квант, мы теперь можем дать ясный ответ. Это порция энергии электромагнитной волны с данным волновым вектором.

Эта волна есть квантовый осциллятор.

Кроме того, нам теперь понятно, что такое нулевые колебания электромагнитного поля - это нулевые колебания квантовых осцилляторов, которые соответствуют электромагнитным волнам со всевозможными волновыми векторами - каждому волновому вектору соответствует свой осциллятор.

Применение квантовой механики к другим полям дает аналогичные результаты. Существуют нулевые колебания, то есть флюктуации всех возможных полей в основном состоянии - в состоянии с наинизшей энергией, колебания, состоящие в появлении и исчезновении электрон-позитронных, нуклон-антинуклонных и других пар, пионов и других мезонов. Как и фотон, эти частицы возникают как возбужденные состояния соответствующего поля. Кроме того, существуют поля, которые нельзя считать составленными из частиц, как, например, статическое электрическое или магнитное поле. Понятие поля шире понятия частиц.

  • Читать дальше
  • 1
  • ...
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: