Вход/Регистрация
Учебное пособие по курсу «Нейроинформатика»
вернуться

Миркес Е. М.

Шрифт:

Используя выражение для энергии, можно записать систему уравнений, описывающих функционирование сети Хопфилда [312]:

(1)

Сеть Хопфилда в виде (1) является сетью с непрерывным временем. Это, быть может, и удобно для некоторых вариантов аналоговой реализации, но для цифровых компьютеров лучше воспользоваться сетями, функционирующими в дискретном времени — шаг за шагом.

Построим сеть Хопфилда [312] с дискретным временем. Сеть должна осуществлять преобразование входного вектора x так, чтобы выходной вектор x' был ближе к тому эталону, который является правильным ответом. Преобразование сети будем искать в следующем виде:

(2)

где wi — вес i-го эталона, характеризующий его близость к вектору x, Sign — нелинейный оператор, переводящий вектор с координатами yi в вектор с координатами sign(yi).

Функционирование сети

Сеть работает следующим образом:

1. На вход сети подается образ x, а на выходе снимается образ x'.

2. Если x' ≠ x, то полагаем x = x' и возвращаемся к шагу 1.

3. Полученный вектор x' является ответом.

Таким образом, ответ всегда является неподвижной точкой преобразования сети (2) и именно это условие (неизменность при обработке образа сетью) и является условием остановки.

Пусть j* — номер эталона, ближайшего к образу x. Тогда, если выбрать веса пропорционально близости эталонов к исходному образу x, то следует ожидать, что образ x' будет ближе к эталону xi′, чем x, а после нескольких итераций он станет совпадать с эталоном xi′.

Наиболее простой сетью вида (2) является дискретный вариант сети Хопфилда [312] с весами равными скалярному произведению эталонов на предъявляемый образ:

(3)

Рис. 1. а, б, в — эталоны, г — ответ сети на предъявление любого эталона

О сетях Хопфилда (3) известно [53, 231, 247, 312], что они способны запомнить и точно воспроизвести «порядка 0.14n слабо коррелированных образов». В этом высказывании содержится два ограничения:

• число эталонов не превосходит 0.14n.

• эталоны слабо коррелированны.

Наиболее существенным является второе ограничение, поскольку образы, которые сеть должна обрабатывать, часто очень похожи. Примером могут служить буквы латинского алфавита. При обучении сети Хопфилда (3) распознаванию трех первых букв (см. рис. 1 а, б, в), при предъявлении на вход сети любого их эталонов в качестве ответа получается образ, приведенный на рис. 1 г (все образы брались в рамке 10 на 10 точек).

В связи с такими примерами первый вопрос о качестве работы сети ассоциативной памяти звучит тривиально: будет ли сеть правильно обрабатывать сами эталонные образы (т. е. не искажать их)?

Мерой коррелированности образов будем называть следующую величину:

Зависимость работы сети Хопфилда от степени коррелированности образов можно легко продемонстрировать на следующем примере. Пусть даны три эталона x1, x2, x3 таких, что

(4)

Для любой координаты существует одна из четырех возможностей:

В первом случае при предъявлении сети q-го эталона в силу формулы (3) получаем

так как все скалярные произведения положительны по условию (4). Аналогично получаем в четвертом случае x'j = -1.

Во втором случае рассмотрим отдельно три варианта

так как скалярный квадрат любого образа равен n, а сумма двух любых скалярных произведений эталонов больше n, по условию (4). Таким образом, независимо от предъявленного эталона получаем x'j = 1. Аналогично в третьем случае получаем x'j = -1.

Окончательный вывод таков: если эталоны удовлетворяют условиям (4), то при предъявлении любого эталона на выходе всегда будет один образ. Этот образ может быть эталоном или «химерой», составленной, чаще всего, из узнаваемых фрагментов различных эталонов (примером «химеры» может служить образ, приведенный на рис. 1 г). Рассмотренный ранее пример с буквами детально иллюстрирует такую ситуацию.

  • Читать дальше
  • 1
  • ...
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: