Вход/Регистрация
Когда приходит ответ
вернуться

Вебер Юрий Германович

Шрифт:

«…Математика очищает разум и дает ему новую силу… Бог — первый геометр…» — проповедовал Платон в своей академии под открытым небом Афин. Каждый грек должен был убедиться, что сами небеса с их движением светил и сменой дня и ночи являют собой пример математической красоты и высшей целесообразности.

Воздвигая свое здание идеальных представлений о мире, афинский мудрец искал опоры в числовых и геометрических отношениях. Само число, утверждал он, рождено от божественной природы. Чередование дней и ночей, месяцев и лет дает человеку понятие о времени, — отсюда и произошла философия. Потому и невозможно без математики достичь подлинной мудрости.

«Иди, изучи сначала математику, и тогда я посвящу тебя в философию», — говорил он ученикам.

Подолгу его бородатое лицо в морщинах вечного раздумья склонялось над свитками математических доказательств, ибо в них видел он средство, очищающее разум. И в его блестящих «Диалогах», в форме которых излагал он свои идеи, постоян но виден остроумный метод, также нашедший себе широкое применение в математике, — доказательство от противного.

Но уже ученик его, Аристотель, не станет возводить математику в ранг божественного начала всего сущего. Он снимет с нее мистические одежды. Ученик, двадцать лет проведший в академии Платона и потом не побоявшийся опровергать своего учителя. Ученик, ставший, быть может, наиболее ученым из всех мудрецов своего времени. «Самая всеобъемлющая голова», — как назовет его спустя две тысячи лет другой великий ум — Фридрих Энгельс.

Прогуливаясь в тени знаменитого ликейского парка в окружении учеников, Аристотель не проповедовал им, будто все в мире построено по образу математики. Но, когда садился он за свои научные трактаты, математический подход торжествовал в его исследованиях. Он работал не как провидец и пророк, а «как профессор», говоря по-нашему. Вместе с философией считал он математику первейшей из наук. В его сочинениях математические примеры всегда служили образцом доказательности. Предмет он излагал, как математик: строго систематически, располагая материал последовательно по частям и разделам. И, как математик, он отдавал предпочтение в процессе познания методу дедукции: идти от исходных положений ко всем дальнейшим следствиям, как идут от аксиом ко всем теоремам. Ведь на ней, на дедукции, и стоит вся математика. И не случайно позднейшие исследователи подметят, что он строил свою теорию доказательства весьма схоже с тем, как строил свою геометрию Евклид. Примечательное родство, из которого, подождите, может быть, что-нибудь и вырастет.

Кстати, с Аристотеля и выделилась логика из общего котла философии в самостоятельную науку — в науку о формах мышления. Шесть специальных трактатов, оставшихся от Аристотеля, которые потом в течение веков усердно изучались, комментировались, превозносились и извращались на всякие лады. Ему принадлежат важнейшие положения и определения, с которых до сих пор открываются все современные учебные курсы. И многие поколения ученых-философов, утверждая свои истины, применяли могучий метод Аристотеля, его знаменитые фигуры силлогизма, как средство достоверного вывода. Помните?

Если все люди смертны,
И если Сократ человек,
То Сократ смертен…

В своей логике Аристотель вводит буквенные символы для обозначения различных понятий, как бы пытаясь представить логические отношения в виде формул. «Если А присуще всем Б и Б присуще всем В, то А должно быть присуще всем В». Независимо от того, что мы там можем подразумевать под этими буквами, — человека ли, животное, предмет или какое-нибудь свойство. Задача ставится сразу в общем виде. Гениальная попытка на заре наук ввести принцип символического обобщения, который так расцветет впоследствии, откроет новые средства выражения мыслей и… вызовет к жизни в конце концов ту самую науку, которую назовут математической логикой и с которой столкнется вдруг Мартьянов, попав на скамью амфитеатра в слабо освещенной университетской аудитории.

А пока что в течение времен после Аристотеля будут все больше и больше забываться первородные связи философии с математикой, с науками и все больше и больше сама философия будет превращаться в голое, пустое фразерство — темная пора схоластики. И когда во мраке средневековья блеснет вдруг малая искра и францисканский монах Роджер Бэкон осмелится сказать, что математика — «азбука всей философии», его сочинения предадут анафеме.

Ни о чем этом, конечно, Мартьянов не думал, когда забрел сюда в университет послушать довольно странный семинар. Время и специализация уже прочно разделили то, что было когда-то единым. И в представлении Мартьянова, как и обычно для всех, философия с логикой стояли где-то далеко, на другом краю от наук точных, математических. Словно два полюса, к которым разбегаются противоположные заряды. И кто же он сам, Мартьянов, как не представитель именно точных, технических наук, столь необходимых и процветающих в наше время, — чем он изрядно и гордился.

Только в немногих умах прошлого и вот сейчас в таких малочисленных группках, как эта, собиравшаяся в притихшем по-вечернему университете, созревала мысль соединить вновь друг с другом, казалось бы, совсем далекие теперь области — математику с логикой. Соединить, чтобы представить формы и схемы логического мышления в более обобщенном виде. Чтобы осветить логикой глубокие дебри современной математики. А может быть, и с помощью математического аппарата толкнуть процесс наших рассуждений и выводов по более точным рельсам. Смелые, дерзкие попытки, воспринимавшиеся по-разному: от насмешливых улыбок до грозно сдвинутых бровей.

Философы, увидев формулы, отворачивались: «Это математика, не по нашей части». Математики, увидев построения логики; «предложение», «умозаключение», — отшатывались: «Это философия, лучше подальше». Недаром было сказано, что современные математики не любят вступать «на скользкий путь философии». Того и гляди… И математической логике приходилось пробираться меж двух огней — ничейная полоса!

Бывало, против ее идей раздавались такие обвинения, с упоминанием таких имен в подкрепление, что редкие слушатели, забредавшие на семинар, не знали — уж не сложить ли лучше свои тетрадки и убраться пока что подобру-поздорову. Но и защитники математической логики приводили в ее подкрепление такие цитаты и такие имена, что, воспрянув духом, слушатели опять были готовы раскрыть свои тетрадки для откровений новой области.

  • Читать дальше
  • 1
  • ...
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: