Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

> alias(alpha=RootOf(х^2-2));

α

> factor(х^2-2,alpha);

(х + α)(х - α)

> factor(х^3-у^3);

(х - у)(х² + ху + y²)

> factor(х^3-у^3, (-2)^(1/2));

(x - y)(x² + ху + y²)

> factor(х^3-у^3, (-3)^(1/2));

> factor(х^3-3,complex);

(х+.7211247852 + 1.249024766I)(х+.7211247852 - 1.249024766I) (х - 1.442249570)

3.7.5. Комплектование по степеням — collect

Еще одна функция общего назначения — collect — служит для комплектования выражения expr по степеням указанного фрагмента х (в том числе множества либо списка). Она задается в одной из следующих форм:

collect(а, х)

collect(а, х, form, func)

Во второй форме этой функции дополнительно задаются параметры form (форма) и func (функция или процедура). Параметр form может иметь два значения: recursive (рекурсивная форма) и distributed (дистрибутивная форма). Параметр func позволяет задать имя функции, по которой будет идти комплектование expr. Примеры применения функции collect представлены ниже (файл collect):

> collect(х+х^3-2*х,х);

– x + x³

> collect(х+2*у^3+х+3+х^3*у,recursive, х);

х(2х + 2у³ + 3 + х³y)

> collect(х+2*у^3+х+3+х^3*у,distributive,у);

у(2х + 2y³ + 3 + х³y)

> f:=а*ехр(х)-ехр(х)*х-х;

f: = аех– еx– х

> collect(f,ехр(х));

(а - х)ех– х

> g:=int(х*(ехр(х)+ехр(-х)),х);

> collect(g,ехр(х));

> р:=х*у+а*х*у+у*х^2-а*у*х^2+х+а*х;

р:= ху + аху + уx² - аух² + х + ах

> collect(р,[х,у],recursive);

(1 - а)ух² + ((1 + а)у + 1 + а)х

> collect(р,[х,у],distributed);

(1 +а)х + (1 + а)ху + (1 - а)ух²

> f:=а^3*х^2-х+а^3+а;

f:= а³х² - х + а³ + а

> collect(f,х);

а³х² - х + а³ + а

> collect(f,х,factor);

а³х² - х + а(а² + 1)

> p:=y/x+2*z/x+x^(1/3)-у*х^(1/3);

> collect(р,х);

3.7.6. Работа с пакетом рациональных нормальных форм RationalNormalForms

В Maple входит пакет рациональных нормальных форм RationalNormalForms:

> with(RationalNormalForms);

[AreSimilar, IsHypergeometricTerm, MinimalRepresentation, PolynomialNormalForm, RationalCanonicalForm]

Этот пакет обеспечивает следующие возможности:

• конструирование полиномиальных нормальных форм рациональных функций;

• конструирование рациональных канонических форм для рациональных функций;

• конструирование минимальных представлений для гипергеометрических термов.

Ввиду очевидности названий функций этого пакета ограничимся примерами его применения (файл rnform):

> F := (n^2-2)*(3*n+3)!/((n+3)!*(2*n+5)!);

> IsHypergeometricTerm(F,n,'certificate');

true

> certificate;

> (z,r,s,u,v) := RationalCanonicalForm[1](certificate,n);

> MinimalRepresentation[1](F,n,k);

Глава 4

Практика математического анализа

Математический анализ — одна из самых благодатных областей применения систем компьютерной алгебры [36–46]. В этой главе описано решение с помощью СКА Maple наиболее важных задач математического анализа. Особое внимание в этой главе уделено визуализации записи исходных выражений и результатов вычислений, а также проверке последних.

  • Читать дальше
  • 1
  • ...
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: