Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

> f:= [1, 2, 3, 4, 5];

f:=[1, 2, 3, 4, 5]

> product(f[k],k=1..4);

24

> product(n+k,k=1..4);

(n + 1)(n + 2)(n + 3)(n +4)

> Product(n+k,k=1..m)=product(n+k,k=1..m);

> product(k,k=RootOf(x^3-9));

9

Как и в случае вычисления сумм, вычисление произведений возможно как в численной, так и в аналитической форме — разумеется, если таковая существует. Это показывают следующий пример:

> Product(2/i,i=1..infinity)=product(2/i,i=1..infinity);

Нетрудно понять, что при i, стремящемся к бесконечности, перемножаемые члены последовательности стремятся к нулю, а потому к нулю стремится и их произведение.

4.3. Вычисление производных

4.3.1. Определение производной и полного дифференциала

Если f(x) непрерывная функция аргумента х, то производная этой функции

 

(4.1)

Как известно, значение производной геометрически характеризуется наклоном касательной к графику f(х) в точке x=0. Простейший способ наблюдать построение касательной к заданной точке функции заключается в применении функции showtangent из пакета student. Например, команды

> with(student): showtangent(sin(x), x = 1.7);

строят график синусоиды и касательной к ней в точке х=1.7.

Помимо производной, часто встречается понятие дифференциала

df(x) =f'(x)∙∆x,

то есть произведения производной функции на приращение ее аргумента Δx→0.

Производная от производной f(x), то есть функция f''(x) называется производной второго порядка. Могут быть производные третьего, четвертого и так далее, словом производные высшего порядка. Все математические системы способны вычислять такие производные, как и первую производную f'(x) от функции f(x).

Довольно часто встречаются функции ряда переменных, например f(x, у, z, …). В этом случае может идти речь о частных производных по переменным х, у, z, …. Например, частной производной по переменной х будет выражение:

Подобные выражения нетрудно составить и для частных производных по другим переменным. Можно считать, что при вычислении частной производной по какой то переменной остальные переменные рассматриваются просто как константы. Можно также говорить о частных дифференциалах. Полный дифференциал функции многих переменных можно определить как:

Системы символьной математики позволяют вычислять производные как символьной, так и в численной форме.

Выражение (4.1) показывает, что производная f'(x) может быть найдена путем вычисления предела, записанного в (4.1). Этот популярный у математиков метод получил название Δ– метода. В СКМ он используется редко, поскольку они имеют прямые операторы или функции для вычисления производных.

4.3.2. Функции дифференцирования diff и Diff

Для вычисления производных Maple имеет следующие основные функции:

diff(a, x1, х2, ..., xn)

diff(a, [x1, х2, ..., хn])

Diff(a, x1, х2, ..., xn)

Diff(a, [x1, х2, ..., xn])

Здесь а — дифференцируемое алгебраическое выражение, в частности, функция f(x1, х2, хn) ряда переменных, по которым производится дифференцирование. Функция Diff является инертной формой вычисляемой функции diff и может использоваться для естественного воспроизведения производных в документах.

Первая из этих функций (в вычисляемой и в инертной форме) вычисляет частные производные для выражения а по переменным х1, х2, …, хn. В простейшем случае diff(f(x),x) вычисляет первую производную функции f(x) по переменной х. При n, большем 1, вычисления производных выполняются рекурсивно, например, diff(f(x), х, у) эквивалентно diff(diff(f(x), х), у). Оператор $ можно использовать для вычисления производных высокого порядка. Для этого после имени соответствующей переменной ставится этот оператор и указывается порядок производной. Например, выражение diff(f(x),x$4) вычисляет производную 4-го порядка и эквивалентно записи diff(f(x),x,x,x,x). A diff(g(x,y),x$2,y$3) эквивалентно diff(g(x,y),x,x,y,y,y).

  • Читать дальше
  • 1
  • ...
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: