Вход/Регистрация
Программирование на языке Ruby
вернуться

Фултон Хэл

Шрифт:

Обычно нам безразличен порядок байтов в конкретной машинной архитектуре. Но как быть, если все-таки его нужно знать?

Можно воспользоваться показанным ниже методом. Он возвращает одну из строк

LITTLE
,
BIG
или
OTHER
. Решение основано на том факте, что директива
l
выполняет упаковку в машинном формате, а директива
N
распаковывает в сетевом порядке байтов (по определению тупоконечном).

def endianness

 num = 0x12345678

 little = "78563412"

 big = "12345678"

 native = [num].pack('1')

 netunpack = native.unpack('N')[0]

 str = "%8x" % netunpack

 case str

when little

"LITTLE"

 when big

"BIG"

 else

"OTHER"

 end

end

puts endianness # В данном случае печатается "LITTLE"

Этот прием может оказаться удобным, если, например, вы работаете с двоичными данными (скажем, отсканированным изображением), импортированными из другой системы.

5.21. Численное вычисление определенного интеграла

Я очень хорошо владею дифференциальным и интегральным исчислением…

У.С.Джильберт, «Пираты Пензанса», акт 1

Для приближенного вычисления определенного интеграла имеется проверенная временем техника. Любой студент, изучавший математический анализ, вспомнит, что она называется суммой Римана.

Приведенный ниже метод

integrate
принимает начальное и конечное значения зависимой переменной, а также приращение. Четвертый параметр (который на самом деле параметром не является) — это блок. В блоке должно вычисляться значение функции от переданной в него зависимой переменной (здесь слово «переменная» употребляется в математическом, а не программистском смысле). Необязательно отдельно определять функцию, которая вызывается в блоке, но для ясности мы это сделаем.

def integrate(x0, x1, dx=(x1-x0)/1000.0)

 x = x0

 sum = 0

 loop do

y = yield(x)

sum += dx * y

x += dx

break if x > x1

 end

 sum

end

def f(x)

 x**2

end

z = integrate(0.0,5.0) {|x| f(x) }

puts z, "\n" # 41.7291875

Здесь мы опираемся на тот факт, что блок возвращает значение, которое может быть получено с помощью

yield
. Кроме того, сделаны некоторые допущения. Во-первых, мы предполагаем, что
x0
меньше
x1
(в противном случае получится бесконечный цикл). Читатель сам легко устранит подобные огрехи. Во-вторых, мы считаем, что функцию можно вычислить в любой точке заданной области. Если это не так, мы получим хаотическое поведение. (Впрочем, подобные функции все равно, как правило, не интегрируемы — по крайней мере, на указанном интервале. В качестве примера возьмите функцию
f(x)=x/(x-3)
в точке
x=3
.)

Призвав на помощь полузабытые знания об интегральном исчислении, мы могли бы вычислить, что в данном случае результат равен примерно

41.666
(5 в кубе, поделенное на 3). Почему же ответ не так точен, как хотелось бы? Из-за выбранного размера приращения; чем меньше величина
dx
, тем точнее результат (ценой увеличения времени вычисления).

Напоследок отметим, что подобная методика более полезна для действительно сложных функций, а не таких простых, как

f(x) = x**2
.

5.22. Тригонометрия в градусах, радианах и градах

При измерении дуг математической, а заодно и «естественной» единицей измерения является радиан. По определению, угол в один радиан соответствует длине дуги, равной радиусу окружности. Немного поразмыслив, легко понять, что угол 2 радиан соответствует всей окружности.

Дуговой градус, которым мы пользуемся в повседневной жизни, — пережиток древневавилонской системы счисления по основанию 60: в ней окружность делится на 360 градусов. Менее известна псевдометрическая единица измерения град, определенная так, что прямой угол составляет 100 град (а вся окружность — 400 град).

  • Читать дальше
  • 1
  • ...
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: